cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A002522 a(n) = n^2 + 1.

Original entry on oeis.org

1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501
Offset: 0

Views

Author

Keywords

Comments

An n X n nonnegative matrix A is primitive (see A070322) iff every element of A^k is > 0 for some power k. If A is primitive then the power which should have all positive entries is <= n^2 - 2n + 2 (Wielandt).
a(n) = Phi_4(n), where Phi_k is the k-th cyclotomic polynomial.
As the positive solution to x=2n+1/x is x=n+sqrt(a(n)), the continued fraction expansion of sqrt(a(n)) is {n; 2n, 2n, 2n, 2n, ...}. - Benoit Cloitre, Dec 07 2001
a(n) is one less than the arithmetic mean of its neighbors: a(n) = (a(n-1) + a(n+1))/2 - 1. E.g., 2 = (1+5)/2 - 1, 5 = (2+10)/2 - 1. - Amarnath Murthy, Jul 29 2003
Equivalently, the continued fraction expansion of sqrt(a(n)) is (n;2n,2n,2n,...). - Franz Vrabec, Jan 23 2006
Number of {12,1*2*,21}-avoiding signed permutations in the hyperoctahedral group.
The number of squares of side 1 which can be drawn without lifting the pencil, starting at one corner of an n X n grid and never visiting an edge twice is n^2-2n+2. - Sébastien Dumortier, Jun 16 2005
Also, numbers m such that m^3 - m^2 is a square, (n*(1 + n^2))^2. - Zak Seidov
1 + 2/2 + 2/5 + 2/10 + ... = Pi*coth Pi [Jolley], see A113319. - Gary W. Adamson, Dec 21 2006
For n >= 1, a(n-1) is the minimal number of choices from an n-set such that at least one particular element has been chosen at least n times or each of the n elements has been chosen at least once. Some games define "matches" this way; e.g., in the classic Parker Brothers, now Hasbro, board game Risk, a(2)=5 is the number of cards of three available types (suits) required to guarantee at least one match of three different types or of three of the same type (ignoring any jokers or wildcards). - Rick L. Shepherd, Nov 18 2007
Positive X values of solutions to the equation X^3 + (X - 1)^2 + X - 2 = Y^2. To prove that X = n^2 + 1: Y^2 = X^3 + (X - 1)^2 + X - 2 = X^3 + X^2 - X - 1 = (X - 1)(X^2 + 2X + 1) = (X - 1)*(X + 1)^2 it means: (X - 1) must be a perfect square, so X = n^2 + 1 and Y = n(n^2 + 2). - Mohamed Bouhamida, Nov 29 2007
{a(k): 0 <= k < 4} = divisors of 10. - Reinhard Zumkeller, Jun 17 2009
Appears in A054413 and A086902 in relation to sequences related to the numerators and denominators of continued fractions convergents to sqrt((2*n)^2/4 + 1), n=1, 2, 3, ... . - Johannes W. Meijer, Jun 12 2010
For n > 0, continued fraction [n,n] = n/a(n); e.g., [5,5] = 5/26. - Gary W. Adamson, Jul 15 2010
The only real solution of the form f(x) = A*x^p with negative p which satisfies f^(m)(x) = f^[-1](x), x >= 0, m >= 1, with f^(m) the m-th derivative and f^[-1] the compositional inverse of f, is obtained for m=2*n, p=p(n)= -(sqrt(a(n))-n) and A=A(n)=(fallfac(p(n),2*n))^(-p(n)/(p(n)+1)), with fallfac(x,k):=Product_{j=0..k-1} (x-j) (falling factorials). See the T. Koshy reference, pp. 263-4 (there are also two solutions for positive p, see the corresponding comment in A087475). - Wolfdieter Lang, Oct 21 2010
n + sqrt(a(n)) = [2*n;2*n,2*n,...] with the regular continued fraction with period 1. This is the even case. For the general case see A087475 with the Schroeder reference and comments. For the odd case see A078370.
a(n-1) counts configurations of non-attacking bishops on a 2 X n strip [Chaiken et al., Ann. Combin. 14 (2010) 419]. - R. J. Mathar, Jun 16 2011
Also numbers k such that 4*k-4 is a square. Hence this sequence is the union of A053755 and A069894. - Arkadiusz Wesolowski, Aug 02 2011
a(n) is also the Moore lower bound on the order, A191595(n), of an (n,5)-cage. - Jason Kimberley, Oct 17 2011
Left edge of the triangle in A195437: a(n+1) = A195437(n,0). - Reinhard Zumkeller, Nov 23 2011
If h (5,17,37,65,101,...) is prime is relatively prime to 6, then h^2-1 is divisible by 24. - Vincenzo Librandi, Apr 14 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as A005899(n)^2 - a(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
a(n) is also the number of permutations simultaneously avoiding 213 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n-1) is the maximum number of stages in the Gale-Shapley algorithm for finding a stable matching between two sets of n elements given an ordering of preferences for each element (see Gura et al.). - Melvin Peralta, Feb 07 2016
Because of Fermat's little theorem, a(n) is never divisible by 3. - Altug Alkan, Apr 08 2016
For n > 0, if a(n) points are placed inside an n X n square, it will always be the case that at least two of the points will be a distance of sqrt(2) units apart or less. - Melvin Peralta, Jan 21 2017
Also the limit as q->1^- of the unimodal polynomial (1-q^(n*k+1))/(1-q) after making the simplification k=n. The unimodal polynomial is from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <= 1. See G_1(n,k) from arXiv:1711.11252. As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984. - Bryan T. Ek, Apr 11 2018
a(n) is the smallest number congruent to both 1 (mod n) and 2 (mod n+1). - David James Sycamore, Apr 04 2019
a(n) is the number of permutations of 1,2,...,n+1 with exactly one reduced decomposition. - Richard Stanley, Dec 22 2022
From Klaus Purath, Apr 03 2025: (Start)
The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*y^2 = -1. The values for k and the solutions x, y can be calculated using the following algorithm: k = n, x(0) = 1, x(1) = 4*D - 1, y(0) = 1, y(1) = 4*D - 3. The two recurrences are of the form (4*D - 2, -1). The solutions x, y of the Pell equations for n = {1 ... 14} are in OEIS.
It follows from the above that this sequence is a subsequence of A031396. (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 17*x^4 + 26*x^5 + 37*x^6 + 50*x^7 + 65*x^8 + ...
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • E. Gura and M. Maschler, Insights into Game Theory: An Alternative Mathematical Experience, Cambridge, 2008; p. 26.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.

Crossrefs

Left edge of A055096.
Cf. A059100, A117950, A087475, A117951, A114949, A117619 (sequences of form n^2 + K).
a(n+1) = A101220(n, n+1, 3).
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), this sequence (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A002496 (primes).
Cf. A254858.
Subsequence of A031396.

Programs

Formula

O.g.f.: (1-x+2*x^2)/((1-x)^3). - Eric Werley, Jun 27 2011
Sequences of the form a(n) = n^2 + K with offset 0 have o.g.f. (K - 2*K*x + K*x^2 + x + x^2)/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a*(n-3). - R. J. Mathar, Apr 28 2008
For n > 0: a(n-1) = A143053(A000290(n)) - 1. - Reinhard Zumkeller, Jul 20 2008
A143053(a(n)) = A000290(n+1). - Reinhard Zumkeller, Jul 20 2008
a(n)*a(n-2) = (n-1)^4 + 4. - Reinhard Zumkeller, Feb 12 2009
a(n) = A156798(n)/A087475(n). - Reinhard Zumkeller, Feb 16 2009
From Reinhard Zumkeller, Mar 08 2010: (Start)
a(n) = A170949(A002061(n+1));
A170949(a(n)) = A132411(n+1);
A170950(a(n)) = A002061(n+1). (End)
For n > 1, a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n - 2)^2 + (a(n) + n - 1 + a(n) + n)^2 = (n+1) *(6*n^4 + 18*n^3 + 26*n^2 + 19*n + 6) / 6 = (a(n) + n)^2 + ... + (a(n) + 2*n)^2. - Charlie Marion, Jan 10 2011
From Eric Werley, Jun 27 2011: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2.
a(n) = a(n-1) + 2*n - 1. (End)
a(n) = (n-1)^2 + 2(n-1) + 2 = 122 read in base n-1 (for n > 3). - Jason Kimberley, Oct 20 2011
a(n)*a(n+1) = a(n*(n+1) + 1) so a(1)*a(2) = a(3). More generally, a(n)*a(n+k) = a(n*(n+k) + 1) + k^2 - 1. - Jon Perry, Aug 01 2012
a(n) = (n!)^2* [x^n] BesselI(0, 2*sqrt(x))*(1+x). - Peter Luschny, Aug 25 2012
a(n) = A070216(n,1) for n > 0. - Reinhard Zumkeller, Nov 11 2012
E.g.f.: exp(x)*(1 + x + x^2). - Geoffrey Critzer, Aug 30 2013
a(n) = A254858(n-2,3) for n > 2. - Reinhard Zumkeller, Feb 09 2015
Sum_{n>=0} (-1)^n / a(n) = (1+Pi/sinh(Pi))/2 = 0.636014527491... = A367976 . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/2 = 2.076674... = A113319. - Vaclav Kotesovec, Apr 10 2016
4*a(n) = A001105(n-1) + A001105(n+1). - Bruno Berselli, Jul 03 2017
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi)*sinh(sqrt(2)*Pi).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi). (End)
Sum_{n>=0} a(n)/n! = 3*e. - Davide Rotondo, Feb 16 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A028872 a(n) = n^2 - 3.

Original entry on oeis.org

1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301
Offset: 2

Views

Author

Keywords

Comments

Number of edges in the join of two star graphs, each of order n, S_n * S_n. - Roberto E. Martinez II, Jan 07 2002
Number of vertices in the hexagonal triangle T(n-2) (see the He et al. reference). - Emeric Deutsch, Nov 14 2014
Positive X values of solutions to the equation X^3 + (X - 3)^2 + X - 6 = Y^2. To prove that X = n^2 + 4n + 1: Y^2 = X^3 + (X - 3)^2 + X - 6 = X^3 + X^2 - 5X + 3 = (X + 3)(X^2 - 2X + 1) = (X + 3)*(X - 1)^2 it means: X = 1 or (X + 3) must be a perfect square, so X = k^2 - 3 with k >= 2. we can put: k = n + 2, which gives: X = n^2 + 4n + 1 and Y = (n + 2)(n^2 + 4n). - Mohamed Bouhamida, Nov 29 2007
Equals binomial transform of [1, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
Let C = 2 + sqrt(3) = 3.732...; and 1/C = 0.267...; then a(n) = (n - 2 + C) * (n - 2 + 1/C). Example: a(5) = 46 = (5 + 3.732...)*(5 + 0.267...). - Gary W. Adamson, Jul 29 2009
a(n), n >= 0, with a(0) = -3 and a(1) = -2, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 12 for b = 2*n. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
If A(n) is a 3 X 3 Khovanski matrix having 1 below the main diagonal, n on the main diagonal, and n^3 above the main diagonal, then (Det(A(n)) - 2*n^3) / n^4 = a(n). - Gary Detlefs, Nov 12 2013
Imagine a large square containing four smaller square "holes" of equal size: Let x = large square side and y = smaller square side; considering instances where the area of this shape [x^2 - 4*y^2] equals the length of its perimeter, [4*(x + 4*y)]. When y is an integer n, the above equation is satisfied by x = 2 + 2*sqrt(a(n)). - Peter M. Chema, Apr 10 2016
a(n+1) is the number of distinct linear partitions of 2 X n grid points. A linear partition is a way to partition given points by a line into two nonempty subsets. Details can be found in Pan's link. - Ran Pan, Jun 06 2016
Numbers represented as 141 in number base B: 141(5) = 46, 141(6) = 61 and, if 'digits' larger than (B-1) are allowed, 141(2) = 13, 141(3) = 22, 141(4) = 33. - Ron Knott, Nov 14 2017

Crossrefs

Essentially the same: A123968, A267874.

Programs

Formula

From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: x^2*(1 + 3*x - 2*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n+1) = floor((n^4 + 2*n^3)/(n^2 + 1)). - Gary Detlefs, Feb 20 2010, corrected by Charles R Greathouse IV, Mar 18 2022
a(n) = a(n-1) + 2*n-1 (with a(2)=1). - Vincenzo Librandi, Nov 18 2010
a(n)*a(n-1) + 3 = (a(n) - n)^2 = A014209(n-2)^2. - Bruno Berselli, Dec 07 2011
a(n) = A000290(n) - 3. - Michel Marcus, Nov 13 2013
Sum_{n>=2} 1/a(n) = 2/3 - Pi*cot(sqrt(3)*Pi)/(2*sqrt(3)) = 1.476650189986093617... . - Vaclav Kotesovec, Apr 10 2016
E.g.f.: (x^2 + x - 3)*exp(x) + 2*x + 3. - G. C. Greubel, Jul 19 2017
Sum_{n>=2} (-1)^n/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/6 = 0.8826191087... - Amiram Eldar, Nov 04 2020
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=2} (1 + 1/a(n)) = sqrt(6)*csc(sqrt(3)*Pi)*sin(sqrt(2)*Pi).
Product_{n>=3} (1 - 1/a(n)) = -Pi*csc(sqrt(3)*Pi)/(4*sqrt(3)). (End)

A132592 X-values of solutions to the equation X*(X + 1) - 8*Y^2 = 0.

Original entry on oeis.org

0, 8, 288, 9800, 332928, 11309768, 384199200, 13051463048, 443365544448, 15061377048200, 511643454094368, 17380816062160328, 590436102659356800, 20057446674355970888, 681362750825443653408, 23146276081390728245000, 786292024016459316676608, 26710782540478226038759688
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 14 2007

Keywords

Comments

Equivalently, numbers k such that both k/2 and k+1 are squares. - Karl-Heinz Hofmann, Sep 20 2022
Equivalently, numbers k such that the k-dimensional volume and total (k-1)-dimensional volume are equal, with side length being a positive integer, for all regular polyhedra constructible in k dimensions. - Matt Moir, Jul 09 2024

Crossrefs

Programs

Formula

a(0)=0, a(1)=8 and a(n) = 34*a(n-1) - a(n-2) + 16.
a(n) = (A056771(n) - 1)/2. - Max Alekseyev, Nov 13 2009
a(n) = sinh(2*n*arccosh(sqrt(2))^2) (n=0,1,2,3,...). - Artur Jasinski, Feb 10 2010
G.f.: -8*x*(x+1)/((x-1)*(x^2-34*x+1)). - Colin Barker, Oct 24 2012
a(n) = A055792(n+1)-1 = A001541(n)^2 - 1. - Antti Karttunen, Oct 03 2016

Extensions

More terms from Max Alekseyev, Nov 13 2009

A060626 Number of right triangles of a given area required to form successively larger squares.

Original entry on oeis.org

2, 14, 34, 62, 98, 142, 194, 254, 322, 398, 482, 574, 674, 782, 898, 1022, 1154, 1294, 1442, 1598, 1762, 1934, 2114, 2302, 2498, 2702, 2914, 3134, 3362, 3598, 3842, 4094, 4354, 4622, 4898, 5182, 5474, 5774, 6082, 6398, 6722, 7054, 7394, 7742, 8098, 8462, 8834, 9214
Offset: 0

Views

Author

Jason Earls, Apr 13 2001

Keywords

Comments

a(n) = number of row of Pascal's triangle in which three consecutive entries appear in the ratio n : n+1 : n+2 (valid for n = 0 if you consider a position of -1 to have value 0). E.g., entries in the ratio 1:2:3 appear in row 14 (1001, 2002, 3003); entries in the ratio 2:3:4 appear in row 34 (927983760, 1391975640, 1855967520); and so on. (The position within the row is given by A091823). - Howard A. Landman, Mar 08 2004
a(n)*(a(n)+1) is an oblong number (Cf. A002378) with the property that the product with the oblong numbers n*(n+1) or (n+1)*(n+2) both are again oblong numbers. Example: For n=3 we have (62*63)*(3*4) = 216*217 and (62*63)*(4*5) = 279*280. - Herbert Kociemba, Apr 13 2008
For n > 0, Hermite polynomial H_2(n) = 4*n^2 - 2. - Vincenzo Librandi, Aug 07 2010
The identity (4*n^2-2)^2 - (n^2-1)*(4*n)^2 = 4 can be written as a(n+1)^2 - A132411(n+2)*A008586(n+2)^2 = 4. - Vincenzo Librandi, Jun 16 2014
Equivalently: positive integers k congruent to 2 mod 4 (A016825) such that k$ / (k/2+1)! is a square when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692, A349496 and A349766 for further information). Integers k multiple of 4 such that that k$ / (k/2+1)! is a square are in A035008. - Bernard Schott, Dec 05 2021

Crossrefs

Twice Column 2 of array A188644.
Subsequence of A016825.
Equals disjoint union of A349496 and A349766.

Programs

  • Maple
    for n from 0 to 80 do printf(`%d,`,4*n^2+8*n+2) od:
  • Mathematica
    Table[4*n*(n + 2) + 2, {n, 0, 100}] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    a(n) = { 4*n^2 + 8*n + 2 } \\ Harry J. Smith, Jul 08 2009

Formula

a(n) = 4*n^2 + 8*n + 2.
a(n) = 8*n + a(n-1) + 4 with n > 0, a(0)=2. - Vincenzo Librandi, Aug 07 2010
G.f.: 2*(1 + 4*x - x^2)/(1-x)^3. - Colin Barker, Jun 28 2012
a(n) = 4*(n+1)^2 - 2 = 2*A056220(n+1). - Bruce J. Nicholson, Aug 31 2017
a(n) + a(n-1) + (n-1)^2 = (3*n + 1)^2 = A016777(n)^2. - Ezhilarasu Velayutham, May 23 2019
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: 2*exp(x)*(1 + 6*x + 2*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from James Sellers, Apr 14 2001

A258807 a(n) = n^5 - 1.

Original entry on oeis.org

0, 31, 242, 1023, 3124, 7775, 16806, 32767, 59048, 99999, 161050, 248831, 371292, 537823, 759374, 1048575, 1419856, 1889567, 2476098, 3199999, 4084100, 5153631, 6436342, 7962623, 9765624, 11881375, 14348906, 17210367, 20511148, 24299999, 28629150, 33554431
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A181124.
Sequences of the type n^k-1: A132411 (k=2), A068601 (k=3), A123865 (k=4), this sequence (k=5), A123866 (k=6), A258808 (k=7), A258809 (k=8), A258810 (k=9), A123867 (k=10), A258812 (k=11), A123868 (k=12).

Programs

  • GAP
    List([1..35],n->n^5-1); # Muniru A Asiru, Oct 28 2018
    
  • Magma
    [n^5-1: n in [1..50]];
    
  • Magma
    I:=[0,31,242,1023, 3124,7775]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+ 6*Self(n-5)-Self(n-6): n in [1..50]];
    
  • Maple
    seq(n^5-1,n=1..35); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[n^5 - 1, {n, 1, 50}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 31, 242, 1023, 3124, 7775}, 50]
  • PARI
    a(n)=n^5-1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Python
    for n in range(1, 50): print(n**5 - 1, end=', ') # Stefano Spezia, Oct 28 2018
  • Sage
    [n^5-1 for n in (1..50)] # Bruno Berselli, Jun 11 2015
    

Formula

G.f.: x^2*(31 + 56*x + 36*x^2 - 4*x^3 + x^4)/(1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = -A024003(n). - Bruno Berselli, Jun 11 2015
Sum_{n>=2} 1/a(n) = Sum_{n>=1} (zeta(5*n) - 1) = 0.0379539032... - Amiram Eldar, Nov 06 2020

A170949 "Conway's Converger": a reordering of the integers (see Comments for definition).

Original entry on oeis.org

1, 3, 2, 4, 8, 6, 5, 7, 9, 15, 13, 11, 10, 12, 14, 16, 24, 22, 20, 18, 17, 19, 21, 23, 25, 35, 33, 31, 29, 27, 26, 28, 30, 32, 34, 36, 48, 46, 44, 42, 40, 38, 37, 39, 41, 43, 45, 47, 49, 63, 61, 59, 57, 55, 53, 51, 50, 52, 54, 56, 58, 60, 62, 64, 80, 78, 76, 74, 72
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2010

Keywords

Comments

The integers are written in blocks of lengths 1, 3, 5, 7, 9, ... . The first number in the block is moved to the center of the block, and then the numbers are written alternately to the left and the right. The block of length 2n-1 ends with n^2, which is not moved.
Let S = Sum_{i >= 1} s(i) be a not necessarily converging series and let T = Sum_{i >= 1} s(a(i)). Then if S converges so does T. On the other hand there are examples where T converges but S does not (for example S = 1 + 1 + 0 - 1 + 1/2 + 1/2 + 0 - 1/2 - 1/2 + 1/3 (3 times) + 0 - 1/3 (3 times) + 1/5 (5 times) + 0 - 1/5 (5 times) + ...). [Conway]
From Reinhard Zumkeller, Mar 08 2010: (Start)
a(n + 2*A003059(n)) = a(n) + 2*A003059(n) - 1;
a(A002522(n-1)) = A132411(n); a(A002061(n)) = A002522(n-1). (End)
The sum of the rows is n^3+(n+1)^3 [A005898] (1,9,35,91,189,...). - Vincenzo Librandi, Feb 22 2010

Examples

			                           1
                        3  2  4
                     8  6  5  7  9
                 15 13 11 10 12 14 16
              24 22 20 18 17 19 21 23 25
           35 33 31 29 27 26 28 30 32 34 36
        48 46 44 42 40 38 37 39 41 43 45 47 49
     63 61 59 57 55 53 51 50 52 54 56 58 60 62 64
  80 78 76 74 72 70 68 66 65 67 69 71 73 75 77 79 81
		

References

  • J. H. Conway, Personal communication, Feb 19 2010

Crossrefs

Cf. A000290 (right diagonal), A132411 (left diagonal). - Michel Marcus, Aug 02 2018

Programs

  • Haskell
    a170949 n k = a170949_tabf !! (n-1) !! (k-1)
    a170949_row n = a170949_tabf !! (n-1)
    a170949_tabf = [1] : (map fst $ iterate f ([3,2,4], 3)) where
      f (xs@(x:_), i) = ([x + i + 2] ++ (map (+ i) xs) ++ [x + i + 3], i + 2)
    a170949_list = concat a170949_tabf
    -- Reinhard Zumkeller, Jan 31 2014
  • Mathematica
    row[n_] := Join[ro = Range[n^2-1, (n-1)^2+1, -2], Reverse[ro]-1, {n^2}];
    Array[row, 9] // Flatten (* Jean-François Alcover, Aug 02 2018 *)

A180355 a(n) = n^5 + 5n.

Original entry on oeis.org

0, 6, 42, 258, 1044, 3150, 7806, 16842, 32808, 59094, 100050, 161106, 248892, 371358, 537894, 759450, 1048656, 1419942, 1889658, 2476194, 3200100, 4084206, 5153742, 6436458, 7962744, 9765750, 11881506, 14349042, 17210508, 20511294
Offset: 0

Views

Author

Odimar Fabeny, Aug 30 2010

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Sep 24 2010: (Start)
G.f.: 6*x*(1+x+16*x^2+x^3+x^4)/(x-1)^6.
a(n) = +6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). (End)

Extensions

First term corrected by Odimar Fabeny, Sep 23 2010
a(0) corrected by R. J. Mathar, Sep 24 2010

A180356 a(n) = n^6 + 6n.

Original entry on oeis.org

0, 7, 76, 747, 4120, 15655, 46692, 117691, 262192, 531495, 1000060, 1771627, 2986056, 4826887, 7529620, 11390715, 16777312, 24137671, 34012332, 47045995, 64000120, 85766247, 113380036, 148036027, 191103120, 244140775, 308915932
Offset: 0

Views

Author

Odimar Fabeny, Aug 30 2010

Keywords

Crossrefs

Programs

  • Magma
    [n^6+6*n : n in [0..50]]; // Wesley Ivan Hurt, Jul 07 2025
  • Mathematica
    Table[n^6+6n,{n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,7,76,747,4120,15655,46692},30] (* Harvey P. Dale, Feb 14 2023 *)

Formula

a(n) = +7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7). G.f.: x*(-7-27*x-362*x^2-242*x^3-87*x^4+5*x^5)/(x-1)^7. - R. J. Mathar, Sep 24 2010

Extensions

First term corrected by Odimar Fabeny, Sep 23 2010
a(0) corrected by R. J. Mathar, Sep 24 2010

A185726 Array associated with squares, by antidiagonals.

Original entry on oeis.org

1, 3, 4, 8, 10, 10, 18, 22, 24, 21, 35, 44, 45, 48, 39, 61, 80, 81, 84, 86, 66, 98, 134, 138, 136, 144, 142, 104, 148, 210, 222, 216, 220, 231, 220, 155, 213, 312, 339, 332, 325, 340, 351, 324, 221, 295, 444, 495, 492, 475, 480, 504, 510, 458, 304, 396, 610, 696, 704, 680, 666, 690, 720, 714, 626, 406, 518, 814, 948, 976, 950, 918, 924, 965, 996, 969, 832, 529, 663, 1060, 1257, 1316, 1295, 1248, 1225, 1260, 1315, 1340, 1281, 1080, 675, 833, 1352, 1629, 1732, 1725
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2011

Keywords

Comments

Every positive integer occurs exactly once; hence, as a sequence, A185725 is a permutation of the positive integers. The square with corners T(0,0)=1 and T(n,n)=n^2 is occupied by the numbers 1,2,...,n^2.
T(n,1)=n^2 (A000290)
T(n,n)=(n-1)^2+1 (A002522)
T(1,k)=k^2-1 (A132411).

Examples

			Northwest corner:
1...3...8...15...24
4...2...6...13...22
9...7...5...11...20
16..14..12..10...18
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=n^2-2*k+2/; n>=k;
    f[n_,k_]:=k^2-2*n+1/; n
    				

Formula

T(n,k)=n^2-2k+2 if n>=k; T(n,k)=k^2-2n+1 if n

A349947 Triangular array: row n gives the positions of n+1 in A349946.

Original entry on oeis.org

1, 2, 4, 3, 5, 9, 6, 7, 10, 16, 8, 11, 12, 17, 25, 13, 14, 18, 19, 26, 36, 15, 20, 21, 27, 28, 37, 49, 22, 23, 29, 30, 38, 39, 50, 64, 24, 31, 32, 40, 41, 51, 52, 65, 81, 33, 34, 42, 43, 53, 54, 66, 67, 82, 100, 35, 44, 45, 55, 56, 68, 69, 83, 84, 101, 121
Offset: 1

Author

Clark Kimberling, Dec 07 2021

Keywords

Comments

Every positive integer occurs exactly once, so as a sequence, this is a permutation of the positive integers.
Row n ends in n^2. The first term in row n is (1 + n/1)^2 - 3 if n >= 4 and n is even; as in A028872(n) for n >= 3.
The first term in row n is ((n+1)/2)^2 - 1 if n >= 3 and n is odd, as in A132411(n) for n >= 3.

Examples

			First 7 rows:
   1
   2   4
   3   5   9
   6   7  10  16
   8  11  12  17  25
  13  14  18  19  26  36
  14  20  21  27  28  37  49
		

Crossrefs

Programs

  • Mathematica
    t = {1, 1}; Do[t = Join[t, Riffle[Range[n], n], {n}], {n, 2, 100}];
    u = Flatten[Partition[t, 2]];
    v = Table[n (n + 1), {n, 1, 80}];
    d = Delete[u, Map[{#} &, v]]; (* A349526 *)
    p = Table[{d[[n]], d[[n + 1]]}, {n, 1, 150}];
    q = Map[Total, p]  (* A349946 *)
    r = Table[Flatten[Position[q, n]], {n, 2, 12}]  (* A349947 array *)
    Flatten[r]  (* A349947 sequence *)
Showing 1-10 of 18 results. Next