A194036
Natural interspersion of A028872, a rectangular array, by antidiagonals.
Original entry on oeis.org
1, 6, 2, 13, 7, 3, 22, 14, 8, 4, 33, 23, 15, 9, 5, 46, 34, 24, 16, 10, 11, 61, 47, 35, 25, 17, 18, 12, 78, 62, 48, 36, 26, 27, 19, 20, 97, 79, 63, 49, 37, 38, 28, 29, 21, 118, 98, 80, 64, 50, 51, 39, 40, 30, 31, 141, 119, 99, 81, 65, 66, 52, 53, 41, 42, 32, 166, 142
Offset: 1
Northwest corner:
1...6...13...22...33
2...7...14...23...34
3...8...15...24...35
4...9...16...25...36
5...10..17...26...37
11..18..27...38...51
-
z = 30;
c[k_] := k^2 + 2 k - 2;
c = Table[c[k], {k, 1, z}] (* A028872 *)
f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
f = Table[f[n], {n, 1, 255}] (* A071797 *)
r[n_] := Flatten[Position[f, n]]
t[n_, k_] := r[n][[k]]
TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]]
p = Flatten[Table[t[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194036 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]] (* A194037 *)
A002522
a(n) = n^2 + 1.
Original entry on oeis.org
1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501
Offset: 0
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 17*x^4 + 26*x^5 + 37*x^6 + 50*x^7 + 65*x^8 + ...
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- E. Gura and M. Maschler, Insights into Game Theory: An Alternative Mathematical Experience, Cambridge, 2008; p. 26.
- Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000. Format corrected by _Peter Kagey_, Jan 25 2016
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Łukaszyk, On the Salient Regularities of Strings of Assembly Theory, Preprints (2024). See p. 19.
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Łukaszyk, Assembly Theory - Formalizing Assembly Spaces and Discovering Patterns and Bounds, Preprints.org (2025). See p. 28.
- R. P. Boas and N. J. A. Sloane, Correspondence, 1974
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 44, 56.
- Giulio Cerbai and Luca Ferrari, Permutation patterns in genome rearrangement problems: the reversal model, arXiv:1903.08774 [math.CO], 2019. See p. 19.
- S. Chaiken et al., Nonattacking Queens in a Rectangular Strip, arXiv:1105.5087 [math.CO], 2011.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
- R. M. Green and Tianyuan Xu, 2-roots for simply laced Weyl groups, arXiv:2204.09765 [math.RT], 2022.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv:1410.2657 [math.CO], 2014.
- C. Homberger and V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv:1308.4946 [math.CO], 2013.
- L. B. W. Jolley, Summation of Series, Dover, 1961, p. 176.
- S. J. Leon, Linear Algebra with Applications: the Perron-Frobenius Theorem [Cached copy at the Wayback Machine]
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv:1508.07894 [math.NT], 2015.
- Eric Weisstein's World of Mathematics, Number Picking
- Eric Weisstein's World of Mathematics, Near-Square Prime
- Helmut Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642-648. volume 52
- Reinhard Zumkeller, Enumerations of Divisors
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A059592,
A124808,
A132411,
A132414,
A028872,
A005408,
A000124,
A016813,
A086514,
A000125,
A058331,
A080856,
A000127,
A161701-
A161704,
A161706,
A161707,
A161708,
A161710-
A161713,
A161715,
A006261.
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306 (k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4), this sequence (g=5),
A051890 (g=6),
A188377 (g=7). -
Jason Kimberley, Oct 30 2011
-
a002522 = (+ 1) . (^ 2)
a002522_list = scanl (+) 1 [1,3..]
-- Reinhard Zumkeller, Apr 06 2012
-
[n^2 + 1: n in [0..50]]; // Vincenzo Librandi, May 01 2011
-
A002522 := proc(n)
numtheory[cyclotomic](4,n) ;
end proc:
seq(A002522(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
-
Table[n^2 + 1, {n, 0, 50}]; (* Vladimir Joseph Stephan Orlovsky, Dec 15 2008 *)
-
A002522(n):=n^2+1$ makelist(A002522(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=n^2+1 \\ Charles R Greathouse IV, Jun 10 2011
A001835
a(n) = 4*a(n-1) - a(n-2), with a(0) = 1, a(1) = 1.
Original entry on oeis.org
1, 1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, 1542841, 5757961, 21489003, 80198051, 299303201, 1117014753, 4168755811, 15558008491, 58063278153, 216695104121, 808717138331, 3018173449203, 11263976658481, 42037733184721, 156886956080403, 585510091136891
Offset: 0
- Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009).
- Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics I, p. 292.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Mudit Aggarwal and Samrith Ram, Generating functions for straight polyomino tilings of narrow rectangles, arXiv:2206.04437 [math.CO], 2022.
- R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
- Krassimir T. Atanassov and Anthony G. Shannon, On intercalated Fibonacci sequences, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 218-223.
- Steve Butler, Paul Horn, and Eric Tressler, Intersecting Domino Tilings, Fibonacci Quart. 48 (2010), no. 2, 114-120.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 31, 56.
- Niccolò Castronuovo, On the number of fixed points of the map gamma, arXiv:2102.02739 [math.NT], 2021. Mentions this sequence.
- A. Consilvio et al., Tilings, ordered partitions, and weird languages, MAA FOCUS, June/July 2012, 16-17.
- J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., to appear 2016; (See paper #10).
- J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp. 86 (2017), 899-933.
- Leonhard Euler, Vollstaendige Anleitung zur Algebra, Zweiter Teil.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs.
- F. Faase, Results from the counting program.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Darren B. Glass, Critical groups of graphs with dihedral actions. II, Eur. J. Comb. 61, 25-46 (2017).
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (Table V).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 409.
- Tanya Khovanova, Recursive Sequences,
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- David Klarner and Jordan Pollack, Domino tilings of rectangles with fixed width, Disc. Math. 32 (1980) 45-52.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 2.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 (2014), eq. (4).
- Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
- Yong Hao Ng, A partition in three classes of the set of all prime numbers?, Math StackExchange.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982.
- Anitha Srinivasan, The Markoff-Fibonacci Numbers, Fibonacci Quart. 58 (2020), no. 5, 222-228.
- Thotsaporn "Aek" Thanatipanonda, Statistics of Domino Tilings on a Rectangular Board, Fibonacci Quart. 57 (2019), no. 5, 145-153. See p. 151.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
- Index entries for sequences related to dominoes.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
a:=[1,1];; for n in [3..20] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
a001835 n = a001835_list !! n
a001835_list =
1 : 1 : zipWith (-) (map (4 *) $ tail a001835_list) a001835_list
-- Reinhard Zumkeller, Aug 14 2011
-
[n le 2 select 1 else 4*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Sep 16 2016
-
f:=n->((3+sqrt(3))^(2*n-1)+(3-sqrt(3))^(2*n-1))/6^n; [seq(simplify(expand(f(n))),n=0..20)]; # N. J. A. Sloane, Nov 10 2009
-
CoefficientList[Series[(1-3x)/(1-4x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Jul 25 2011, after g.f. *)
LinearRecurrence[{4,-1},{1,1},30] (* Harvey P. Dale, Jun 08 2013 *)
Table[Round@Fibonacci[2n-1, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
Table[(3*ChebyshevT[n, 2] - ChebyshevU[n, 2])/2, {n, 0, 20}] (* G. C. Greubel, Dec 23 2019 *)
-
{a(n) = real( (2 + quadgen(12))^n * (1 - 1 / quadgen(12)) )} /* Michael Somos, Sep 19 2008 */
-
{a(n) = subst( (polchebyshev(n) + polchebyshev(n-1)) / 3, x, 2)} /* Michael Somos, Sep 19 2008 */
-
[lucas_number1(n,4,1)-lucas_number1(n-1,4,1) for n in range(25)] # Zerinvary Lajos, Apr 29 2009
-
[(3*chebyshev_T(n,2) - chebyshev_U(n,2))/2 for n in (0..20)] # G. C. Greubel, Dec 23 2019
A194029
Natural fractal sequence of the Fibonacci sequence (1, 2, 3, 5, 8, ...).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
Offset: 1
The sequence (1, 2, 3, 5, 8, 13, ...) is used to place '1's in positions numbered 1, 2, 3, 5, 8, 13, ... Then gaps are filled in with consecutive counting numbers:
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 5, 1, ...
From _Omar E. Pol_, May 28 2012: (Start)
Written as an irregular triangle the sequence begins:
1;
1;
1, 2;
1, 2, 3;
1, 2, 3, 4, 5;
1, 2, 3, 4, 5, 6, 7, 8;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21; ...
The row lengths are A000045(n).
(End)
- Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168.
-
T:= n-> $1..(<<0|1>, <1|1>>^n)[1, 2]:
seq(T(n), n=1..10); # Alois P. Heinz, Dec 11 2024
-
z = 40;
c[k_] := Fibonacci[k + 1];
c = Table[c[k], {k, 1, z}] (* A000045 *)
f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
f = Table[f[n], {n, 1, 800}] (* A194029 *)
r[n_] := Flatten[Position[f, n]]
t[n_, k_] := r[n][[k]]
TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 7}]]
p = Flatten[Table[t[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194030 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194031 *)
Flatten[Range[Fibonacci[Range[66]]]] (* Birkas Gyorgy, Jun 30 2012 *)
A152811
a(n) = 2*(n^2 + 2*n - 2).
Original entry on oeis.org
2, 12, 26, 44, 66, 92, 122, 156, 194, 236, 282, 332, 386, 444, 506, 572, 642, 716, 794, 876, 962, 1052, 1146, 1244, 1346, 1452, 1562, 1676, 1794, 1916, 2042, 2172, 2306, 2444, 2586, 2732, 2882, 3036, 3194, 3356, 3522, 3692, 3866, 4044, 4226, 4412, 4602, 4796, 4994
Offset: 1
a(4) = 2*(4^2 + 2*4 - 2) = 44 = 2*22 = 2*A028872(5); 2*44^3 + 12*44^2 = 193600 = 440^2 is a square.
The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs, Vol. 0(1) (2024), Article 5.
- Allan Bickle, Zagreb Indices of Maximal k-degenerate Graphs, Australas. J. Combin., Vol. 89(1) (2024), pp. 167-178.
- J. Estes and B. Wei, Sharp bounds of the Zagreb indices of k-trees, J. Comb. Optim., Vol. 27 (2014), pp. 271-291.
- I. Gutman and K. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., No. 50 (2004), pp. 83-92.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[ 2*(n^2+2*n-2) : n in [1..47] ];
-
Table[2*n*(n + 2) - 4, {n, 50}] (* Paolo Xausa, Aug 08 2024 *)
-
{m=4700; for(n=1, m, if(issquare(2*n^3+12*n^2), print1(n, ",")))}
A082111
a(n) = n^2 + 5*n + 1.
Original entry on oeis.org
1, 7, 15, 25, 37, 51, 67, 85, 105, 127, 151, 177, 205, 235, 267, 301, 337, 375, 415, 457, 501, 547, 595, 645, 697, 751, 807, 865, 925, 987, 1051, 1117, 1185, 1255, 1327, 1401, 1477, 1555, 1635, 1717, 1801, 1887, 1975, 2065, 2157, 2251, 2347, 2445, 2545, 2647
Offset: 0
-
Table[n^2 + 5*n + 1,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
LinearRecurrence[{3,-3,1},{1,7,15},80] (* Harvey P. Dale, Apr 22 2012 *)
-
a(n)=n^2+5*n+1 \\ Charles R Greathouse IV, Jun 17 2017
A144303
Square array A(n,m), n>=0, m>=0, read by antidiagonals: A(n,m) = n-th number of the m-th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 29, 1, 1, 5, 22, 81, 212, 1, 1, 6, 33, 163, 689, 2117, 1, 1, 7, 46, 281, 1564, 7553, 26830, 1, 1, 8, 61, 441, 2993, 18679, 101961, 412015, 1, 1, 9, 78, 649, 5156, 38705, 268714, 1639529, 7433032, 1, 1, 10, 97, 911, 8257, 71801, 592489, 4538209, 30640257, 154076201, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 13, 22, 33, 46, 61, ...
1, 29, 81, 163, 281, 441, 649, ...
1, 212, 689, 1564, 2993, 5156, 8257, ...
1, 2117, 7553, 18679, 38705, 71801, 123217, ...
1, 26830, 101961, 268714, 592489, 1166886, 2120545, ...
Columns m=0-10 give:
A000012,
A088957,
A089461,
A089464,
A218496,
A218497,
A218498,
A218499,
A218500,
A218501,
A218502.
-
hymtr:= proc(p) proc(n,m) `if`(m=0, p(n), m*add(
p(k)*binomial(n, k) *(n-k+m)^(n-k-1), k=0..n))
end end:
A:= hymtr(1):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
a[, 0] = 1; a[n, k_] := Sum[k*(n - j + k)^(n - j - 1)*Binomial[n, j], {j, 0, n}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jun 24 2013 *)
A121670
a(n) = n^3 - 3*n.
Original entry on oeis.org
0, -2, 2, 18, 52, 110, 198, 322, 488, 702, 970, 1298, 1692, 2158, 2702, 3330, 4048, 4862, 5778, 6802, 7940, 9198, 10582, 12098, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 32672, 35838, 39202, 42770, 46548, 50542, 54758, 59202, 63880, 68798, 73962
Offset: 0
a(4) = 52 since (4 + i)^3 = (52 + 47i); where 47 = A080663(4).
-
CoefficientList[Series[-2 x (x^2 - 5 x + 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 11 2014 *)
Table[n^3-3n,{n,0,60}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,-2,2,18},60] (* Harvey P. Dale, Nov 30 2021 *)
-
Vec(-2*x*(x^2-5*x+1)/(x-1)^4 + O(x^100)); \\ Colin Barker, Oct 16 2013
Terms corrected, new name, and more terms from
Colin Barker, Oct 16 2013
A082105
Array A(n, k) = (k*n)^2 + 4*(k*n) + 1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 13, 13, 1, 1, 22, 33, 22, 1, 1, 33, 61, 61, 33, 1, 1, 46, 97, 118, 97, 46, 1, 1, 61, 141, 193, 193, 141, 61, 1, 1, 78, 193, 286, 321, 286, 193, 78, 1, 1, 97, 253, 397, 481, 481, 397, 253, 97, 1, 1, 118, 321, 526, 673, 726, 673, 526, 321, 118, 1
Offset: 0
Array, A(n, k), begins as:
1, 1, 1, 1, 1, 1, ... A000012;
1, 6, 13, 22, 33, 46, ... A028872;
1, 13, 33, 61, 97, 141, ... A082109;
1, 22, 61, 118, 193, 286, ... ;
1, 33, 97, 193, 321, 481, ... ;
1, 46, 141, 286, 481, 726, ... ;
Triangle, T(n, k), begins as:
1;
1, 1;
1, 6, 1;
1, 13, 13, 1;
1, 22, 33, 22, 1;
1, 33, 61, 61, 33, 1;
1, 46, 97, 118, 97, 46, 1;
1, 61, 141, 193, 193, 141, 61, 1;
1, 78, 193, 286, 321, 286, 193, 78, 1;
-
[(k*(n-k))^2 + 4*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
-
T[n_, k_]:= (k*(n-k))^2 + 4*(k*(n-k)) + 1;
Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
-
def A082105(n,k): return (k*(n-k))^2 + 4*(k*(n-k)) + 1
flatten([[A082105(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022
A190816
a(n) = 5*n^2 - 4*n + 1.
Original entry on oeis.org
1, 2, 13, 34, 65, 106, 157, 218, 289, 370, 461, 562, 673, 794, 925, 1066, 1217, 1378, 1549, 1730, 1921, 2122, 2333, 2554, 2785, 3026, 3277, 3538, 3809, 4090, 4381, 4682, 4993, 5314, 5645, 5986, 6337, 6698, 7069, 7450, 7841, 8242, 8653, 9074
Offset: 0
-
[5*n^2 - 4*n + 1: n in [0..50]]; // Vincenzo Librandi, Jun 19 2011
-
Table[5*n^2 - 4*n + 1, {n, 0, 100}]
LinearRecurrence[{3,-3,1},{1,2,13},100] (* or *) CoefficientList[ Series[ (-10 x^2+x-1)/(x-1)^3,{x,0,100}],x] (* Harvey P. Dale, May 24 2011 *)
-
a(n)=5*n^2-4*n+1 \\ Charles R Greathouse IV, Oct 16 2015
-
[5*n^2-4*n+1 for n in range(41)] # G. C. Greubel, Dec 03 2023
Showing 1-10 of 34 results.
Comments