A132813 Triangle read by rows: A001263 * A127648 as infinite lower triangular matrices.
1, 1, 2, 1, 6, 3, 1, 12, 18, 4, 1, 20, 60, 40, 5, 1, 30, 150, 200, 75, 6, 1, 42, 315, 700, 525, 126, 7, 1, 56, 588, 1960, 2450, 1176, 196, 8, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 2; 1, 6, 3; 1, 12, 18, 4; 1, 20, 60, 40, 5; 1, 30, 150, 200, 75, 6; 1, 42, 315, 700, 525, 126, 7; ...
Links
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
- C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv preprint arXiv:1204.0362 [math.CO], 2012.
- Robert. A. Sulanke, Counting Lattice Paths by Narayana Polynomials Electronic J. Combinatorics 7, No. 1, R40, 1-9, 2000.
Crossrefs
Family of polynomials (see A062145): A008459 (c=1), this sequence (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Columns: A000012 (k=0), A002378 (k=1), A006011 (k=2), 4*A006542 (k=3), 5*A006857 (k=4), 6*A108679 (k=5), 7*A134288 (k=6), 8*A134289 (k=7), 9*A134290 (k=8), 10*A134291 (k=9).
Main diagonal: A000894.
Cf. A103371 (mirrored).
Programs
-
GAP
Flat(List([0..10],n->List([0..n], k->(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1)))); # Muniru A Asiru, Feb 26 2019
-
Haskell
a132813 n k = a132813_tabl !! n !! k a132813_row n = a132813_tabl !! n a132813_tabl = zipWith (zipWith (*)) a007318_tabl $ tail a007318_tabl -- Reinhard Zumkeller, Apr 04 2014
-
Magma
/* triangle */ [[(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 19 2014
-
Maple
P := (n, x) -> hypergeom([1-n, -n], [1], x): for n from 1 to 9 do PolynomialTools:-CoefficientList(simplify(P(n,x)),x) od; # Peter Luschny, Nov 26 2014
-
Mathematica
T[n_,k_]=Binomial[n-1,k-1]*Binomial[n,k-1]; Table[Table[T[n,k],{k,1,n}],{n,1,11}]; Flatten[%] (* Roger L. Bagula, Apr 09 2008 *) P[n_, x_] := HypergeometricPFQ[{1-n, -n}, {1}, x]; Table[CoefficientList[P[n, x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Peter Luschny *)
-
PARI
tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(binomial(n-1, k-1)*binomial(n, k-1) , ", ");););} \\ Michel Marcus, Feb 12 2014
-
SageMath
def A132813(n,k): return binomial(n,k)*binomial(n+1,k) print(flatten([[A132813(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 12 2025
Formula
T(n,k) = (k+1)*binomial(n+1,k+1)*binomial(n+1,k)/(n+1), n >= k >= 0.
From Roger L. Bagula, May 14 2010: (Start)
T(n, m) = coefficients(p(x,n)), where
p(x,n) = (1-x)^(2*n)*Sum_{k >= 0} binomial(k+n-1, k)*binomial(n+k, k)*x^k,
or p(x,n) = (1-x)^(2*n)*Hypergeometric2F1([n, n+1], [1], x). (End)
T(n,k) = binomial(n,k) * binomial(n+1,k). - Reinhard Zumkeller, Apr 04 2014
These are the coefficients of the polynomials Hypergeometric2F1([1-n,-n], [1], x). - Peter Luschny, Nov 26 2014
Comments