cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A133910 Period numbers of A133900 divided by n^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 6, 1, 4, 3, 1, 1, 8, 1, 4, 3, 8, 1, 6, 1, 8, 1, 4, 1, 360, 1, 1, 9, 16, 5, 24, 1, 16, 9, 20, 1, 144, 1, 8, 15, 16, 1, 18, 1, 16, 9, 8, 1, 16, 5, 28, 9, 16, 1, 360, 1, 16, 21, 1, 5, 288, 1, 16, 9, 1120, 1, 24, 1, 32, 9, 16, 7, 288, 1, 20, 1, 64, 1, 6048, 5, 32, 27, 8
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Examples

			a(6)=2, since A133900(6)/6^2=72/36=2.
a(18)=8, since A133900(18)/18^2=2592/324=8.
		

Crossrefs

Formula

a(n)=A133900(n)/n^2.
a(n)=1, iff n is a prime or a power of a prime (including n=1).
If a prime p is a factor of a(n), then p is also a factor of n.

A133622 a(n) = 1 if n is odd, a(n) = n/2+1 if n is even.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44, 1
Offset: 1

Views

Author

Hieronymus Fischer, Sep 30 2007

Keywords

Comments

a(n) is the count of terms a(n+1) present so far in the sequence, with a(n+1) included in the count; example: a(1) = 1 "says" that there is 1 term "2" so far in the sequence; a(2) = 2 "says" that there are 2 terms "1" so far in the sequence... etc. This comment was inspired by A039617. - Eric Angelini, Mar 03 2020

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a133622 n = (1 - m) * n' + 1 where (n', m) = divMod n 2
    a133622_list = concat $ transpose [[1, 1 ..], [2 ..]]
    -- Reinhard Zumkeller, Feb 20 2015
    
  • Maple
    seq([1,n][],n=2..100); # Robert Israel, May 27 2016
  • Mathematica
    Riffle[Range[2,50],1,{1,-1,2}] (* Harvey P. Dale, Jan 19 2013 *)
  • PARI
    a(n)=if(n%2,1,n/2+1) \\ Charles R Greathouse IV, Sep 02 2015

Formula

a(n)=1+(binomial(n+1,2)mod n)=1+(binomial(n+1,n-1)mod n).
a(n)=binomial(n+2,2) mod n = binomial(n+2,n) mod n for n>2.
a(n)=1+(1+(-1)^n)*n/4.
a(n)=1+(A000217(n) mod n).
a(n)=a(n-2)+1, if n is even, a(n)=a(n-2) if n is odd.
a(n)=a(n-2)+1-(n mod 2)=a(n-2)+(1+(-1)^n)/2 for n>2.
a(n)=(a(n-3)+a(n-2))/a(n-1) for n>3.
G.f.: g(x)=x(1+2x-x^2-x^3)/(1-x^2)^2.
G.f.: (Q(0)-1-x)/x^2, where Q(k)= 1 + (k+1)*x/(1 - x/(x + (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013
a(n) = 2*a(n-2)-a(n-4) for n > 4. - Chai Wah Wu, May 26 2016
E.g.f.: exp(x) - 1 + x*sinh(x)/2. - Robert Israel, May 27 2016

A133911 Number of prime factors (counted with multiplicity) of the period numbers defined by A133900.

Original entry on oeis.org

0, 2, 2, 4, 2, 5, 2, 6, 4, 6, 2, 8, 2, 6, 5, 8, 2, 9, 2, 8, 5, 7, 2, 10, 4, 7, 6, 8, 2, 12, 2, 10, 6, 8, 5, 12, 2, 8, 6, 11, 2, 12, 2, 9, 8, 8, 2, 13, 4, 10, 6, 9, 2, 12, 5, 11, 6, 8, 2, 14, 2, 8, 8, 12, 5, 13, 2, 10, 6, 13, 2, 14, 2, 9, 8, 10, 5, 13, 2, 13, 8, 10, 2, 17, 5, 9, 7, 11, 2, 16, 5, 10, 7, 9
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Examples

			a(6)=5, since A133900(6)=72=2*2*2*3*3.
a(12)=8, since A133900(12)=864=2*2*2*2*2*3*3*3.
		

Crossrefs

Formula

a(n)=A001222(A133900(n)).

A134331 Sum of prime factors (counted with multiplicity) of the period numbers defined by A133900.

Original entry on oeis.org

0, 4, 6, 8, 10, 12, 14, 12, 12, 18, 22, 19, 26, 22, 19, 16, 34, 22, 38, 22, 23, 32, 46, 23, 20, 36, 18, 26, 58, 37, 62, 20, 34, 46, 29, 29, 74, 50, 38, 31, 82, 38, 86, 36, 30, 58, 94, 30, 28, 32, 46, 40, 106, 30, 37, 37, 50, 70, 118, 41, 122, 74, 36, 24, 41, 48, 134, 50, 58, 50
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Examples

			a(6)=12, since A133900(6)=72=2*2*2*3*3 and 2+2+2+3+3=12.
a(12)=19, since A133900(12)=864=2*2*2*2*2*3*3*3 and 2+2+2+2+2+3+3+3=19.
		

Crossrefs

A134332 Integer part of the arithmetic mean of the prime factors (counted with multiplicity) of the period numbers defined by A133900.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 3, 11, 2, 13, 3, 3, 2, 17, 2, 19, 2, 4, 4, 23, 2, 5, 5, 3, 3, 29, 3, 31, 2, 5, 5, 5, 2, 37, 6, 6, 2, 41, 3, 43, 4, 3, 7, 47, 2, 7, 3, 7, 4, 53, 2, 7, 3, 8, 8, 59, 2, 61, 9, 4, 2, 8, 3, 67, 5, 9, 3, 71, 2, 73, 9, 4, 5, 8, 4, 79, 2, 3, 9, 83, 3, 9, 11, 10, 3, 89, 2, 9, 6, 11, 12
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Examples

			a(6)=2, since floor(A134331(6)/A133911(6))=floor(12/5)=2.
a(7)=7, since floor(A134331(7)/A133911(7))=floor(14/2)=7.
		

Crossrefs

Formula

a(n)=floor(A134331(n)/A133911(n)) for n>1, defining a(1):=1.
a(n)=n, if n is a prime or 1.

A133884 a(n) = binomial(n+4,n) mod 4.

Original entry on oeis.org

1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 4^2=16.

Examples

			For n=2, binomial(6,2) = 6*5/2 = 15, which is 3 (mod 4) so a(2) = 3. - _Michael B. Porter_, Jul 19 2016
		

Crossrefs

Programs

  • Magma
    [Binomial(n+4,n) mod 4: n in [0..100]]; // Vincenzo Librandi, Jul 15 2016
  • Mathematica
    Table[Mod[Binomial[n + 4, 4], 4], {n, 0, 100}] (* Vincenzo Librandi, Jul 15 2016 *)

Formula

a(n) = binomial(n+4,4) mod 4.
G.f.: (1 + x + 3*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + x^10 + x^11)/(1 - x^16) = (1 + 2*x^2 + 2*x^6 + x^8)/((1 - x)*(1 + x^4)*(1 + x^8)).
a(n) = A000505(n+5) mod 4. - John M. Campbell, Jul 14 2016
a(n) = A000506(n+6) mod 4. - John M. Campbell, Jul 15 2016

Extensions

G.f. corrected by Bruno Berselli, Jul 19 2016

A133906 Least number m such that binomial(n+m, m) mod m = 1.

Original entry on oeis.org

2, 3, 5, 2, 2, 7, 9, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 25, 2, 2, 4, 3, 2, 2, 31, 37, 2, 2, 8, 8, 2, 2, 3, 41, 2, 2, 4, 4, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 4, 4, 2, 2, 67, 3, 2, 2, 44, 44, 2, 2, 16, 16, 2, 2, 3, 4, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 89, 9, 2, 2, 3, 3, 2, 2, 97, 97, 2, 2, 7
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Examples

			a(1)=2, since binomial(1+2, 2) mod 2 = 3 mod 2 = 1 and 2 is the minimal number with this property.
a(7)=9 because of binomial(7+9, 9) = 11440 = 1271*9 + 1, but binomial(7+k, k) mod k <> 1 for all numbers < 9.
		

Crossrefs

Programs

  • Mathematica
    Table[Block[{m = 1}, While[Mod[Binomial[n + m, m], m] != 1, m++]; m], {n, 98}] (* Michael De Vlieger, Jul 30 2018 *)
  • PARI
    a(n) = {my(m = 1, ok = 0); until (ok, if (binomial(n+m, m) % m == 1, ok = 1, m++);); return (m);} \\ Michel Marcus, Jul 15 2013

A133907 Least prime number p such that binomial(n+p, p) mod p = 1.

Original entry on oeis.org

2, 3, 5, 2, 2, 7, 11, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 29, 2, 2, 5, 3, 2, 2, 31, 37, 2, 2, 37, 37, 2, 2, 3, 41, 2, 2, 43, 47, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 59, 61, 2, 2, 67, 3, 2, 2, 67, 71, 2, 2, 71, 73, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 89, 89, 2, 2, 3, 3, 2, 2, 97
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Comments

Also the least prime number p such that p divides floor(n/p) or p > n.
a(n) = 2 if and only if n is in A042948. - Robert Israel, May 11 2017
Conjecture: a(n) is the smallest prime p such that Sum_{k=1..n} k^(p-1) == n (mod p). Thus a(n) >= A317358(n). - Thomas Ordowski, Jul 29 2018

Examples

			a(2)=3, since binomial(2+3,3) mod 3 = 10 mod 3 = 1 and 3 is the minimal prime number with this property.
a(7)=11 because of binomial(7+11, 11) = 31824 = 2893*11 + 1, but binomial(7+k, k) mod k <> 1 for all primes < 11.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m;
      m:= 2:
      while floor(n/m) mod m <> 0 do m:= nextprime(m) od:
      m
    end proc:
    map(f, [$1..100]); # Robert Israel, May 11 2017
  • Mathematica
    a[n_] := Module[{p}, For[p = 2, True, p = NextPrime[p], If[Mod[Binomial[n+p, p], p] == 1, Return[p]]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 05 2023 *)
  • PARI
    a(n) = my(p=2); while (binomial(n+p, p) % p != 1, p = nextprime(p+1)); p; \\ Michel Marcus, Dec 17 2022
    
  • Python
    from sympy import nextprime, ff
    def A133907(n):
        p, m = 2, (n+2)*(n+1)>>1
        while m%p != 1:
            q = nextprime(p)
            m = m*ff(n+q,q-p)//ff(q,q-p)
            p = q
        return p # Chai Wah Wu, Feb 22 2023

A133905 Least composite number m such that binomial(n+m,m) mod m = 1.

Original entry on oeis.org

4, 9, 25, 10, 26, 9, 9, 9, 6, 4, 4, 34, 34, 85, 289, 4, 4, 57, 87, 8, 8, 25, 25, 25, 134, 4, 4, 15, 15, 111, 111, 4, 4, 8, 8, 10, 10, 121, 121, 82, 86, 4, 4, 49, 49, 49, 49, 4, 4, 265, 68, 10, 10, 8, 8, 6, 9, 4, 4, 194, 194, 469, 249, 4, 4, 44, 44, 146, 146, 16, 16, 6, 6, 4, 4, 162
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Examples

			a(1)=4, since binomial(1+4,4) mod 4 = 5 mod 4 = 1 and 4 is the minimal composite number with this property.
a(5)=26 because of binomial(5+26,26)=169911=6535*26+1, but binomial(5+k,k) mod k<>1 for all composite numbers <26.
		

Crossrefs

Programs

  • Mathematica
    lcn[n_]:=Module[{m=4},While[PrimeQ[m]||Mod[Binomial[n+m,m],m]!=1,m++];m]; Array[lcn,80] (* Harvey P. Dale, May 13 2022 *)
  • PARI
    a(n) = { my(m = 4, ok = 0); until (ok, if (! isprime(m) && (binomial(n+m, m) % m == 1), ok = 1, m++);); return (m);} \\ Michel Marcus, Jul 15 2013

A133894 Numbers m such that binomial(m+4,m) mod 4 = 0.

Original entry on oeis.org

12, 13, 14, 15, 28, 29, 30, 31, 44, 45, 46, 47, 60, 61, 62, 63, 76, 77, 78, 79, 92, 93, 94, 95, 108, 109, 110, 111, 124, 125, 126, 127, 140, 141, 142, 143, 156, 157, 158, 159, 172, 173, 174, 175, 188, 189, 190, 191, 204, 205, 206, 207, 220, 221, 222, 223, 236, 237
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Comments

Also numbers m such that floor(1+(m/4)) mod 4 = 0.
Partial sums of the sequence 12,1,1,1,13,1,1,1,13, ... which has period 4.
Numbers congruent to {12,13,14,15} mod 16. Numbers n such that n xor 12 = n - 12. [Brad Clardy, May 06 2013]

Crossrefs

Programs

Formula

a(n) = 4*n + 12 - 3*(n mod 4).
G.f.: 12/(1-x)+x(1+x+x^2+13x^3)/((1-x^4)(1-x)) = (12+x+x^2+x^3+x^4)/((1-x^4)(1-x)) = (12-11x-x^5)/((1-x^4)(1-x)^2).
a(n) = 4*n+3*((1-i)*i^n+(1+i)*(-i)^n+(-1)^n+5)/2, where i=sqrt(-1). - Bruno Berselli, Apr 08 2011
Showing 1-10 of 18 results. Next