A133942 a(n) = (-1)^n * n!.
1, -1, 2, -6, 24, -120, 720, -5040, 40320, -362880, 3628800, -39916800, 479001600, -6227020800, 87178291200, -1307674368000, 20922789888000, -355687428096000, 6402373705728000, -121645100408832000, 2432902008176640000
Offset: 0
Examples
G.f. = 1 - x + 2*x^2 - 6*x^3 + 24*x^4 - 120*x^5 + 720*x^6 - 5040*x^7 + ...
References
- A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p. 141 (10.19)
- R. Roy, Sources in the Development of Mathematics, Cambridge University Press, 2011. See p. 186.
Links
- Iain Fox, Table of n, a(n) for n = 0..449 (first 161 terms from Vincenzo Librandi)
- Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. Amer. Math. Soc., Vol. 50, No. 4 (2013), pp. 527-628; preprint, arXiv:1303.1856 [math.NT], 2013.
- V. S. Varadarajan, Euler and his Work on Infinite Series, Bull. Amer. Math. Soc., 44 (No. 4, 2007), 515-539. (See p. 527 and 530.)
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
GAP
List([0..20],n->(-1)^n*Factorial(n)); # Muniru A Asiru, Oct 27 2018
-
Haskell
a133942 n = a133942_list !! n a133942_list = zipWith (*) a000142_list $ cycle [1, -1] -- Reinhard Zumkeller, Mar 02 2014
-
Magma
[(-1)^n * Factorial(n): n in [0..25]]; // Vincenzo Librandi, May 12 2011
-
Maple
seq((-1)^n*factorial(n),n=0..20); # Muniru A Asiru, Oct 27 2018
-
Mathematica
nn=20;CoefficientList[Series[1/(1+x),{x,0,nn}],x]Range[0,nn]! (* or *) RecurrenceTable[{a[0]==1,a[n]==-n*a[n-1]},a[n],{n,20}] (* Harvey P. Dale, May 10 2011 and slightly modified by Robert G. Wilson v, Feb 12 2018 *) a[n_] := (-1)^n*n!; Array[a, 22, 0] (* Robert G. Wilson v, Feb 11 2018 *) Times@@@Partition[Riffle[Range[0,30]!,{1,-1}],2] (* Harvey P. Dale, Dec 30 2019 *)
-
PARI
{a(n) = if( n<0, 0, (-1)^n * n! )};
-
Python
import math for n in range(0, 25): print((-1)**n*math.factorial(n), end=', ') # Stefano Spezia, Oct 27 2018
Formula
Sum_{i=0..n} (-1)^i * i^n * binomial(n, i) = (-1)^n * n!. - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
Stirling transform of a(n) = [1, -1, 2, -6, 24, ...] is A000007(n) = [1, 0, 0, 0, 0, ...].
a(n) = -n * a(n-1) unless n=0. a(n) = (-1)^n * A000142(n).
E.g.f.: 1/(1 + x).
G.f.: integral(t=1/x,infinity, (e^-t)/t) e^(1/x)/x = 1/(1 + x/(1 + x/(1 + 2*x/(1 + 2*x/(1 + 3*x/(1 + 3*x/(1 + ...))))))).
Convolution inverse of A158882. HANKEL transform is A055209. PSUM transform is A058006. BIN1 transform is A002741(n+1). - Michael Somos, Apr 30 2012
G.f.: 1 - x/(G(0)+x) where G(k) = 1 + (k+1)*x/(1 + x*(k+2)/G(k+1)), G(0) = W(1,1;x)/W(1,2;x), W(a,b,x) = 1 - a*b*x/1! + a*(a+1)*b*(b+1)*x^2/2! - ... + a*(a+1)*...*(a+n-1)*b*(b+1)*...*(b+n-1)*x^n/n! + ...; see [A. N. Khovanskii, p. 141 (10.19)]; (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 14 2012
G.f.: 1/U(0) where U(k) = 1 + x*(k+1)/(1 + x*(k+1)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 15 2012
a(n) = (-1)^n*det(S(i+1,j)|, 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(k+1)/(2*x*(k+1) + 1 + 2*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
E.g.f.: 1/(1 + x)= G(0), where G(k) = 1 - x*(k+1)*(k+2)/(1 + (k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2014
For n >= 1, a(n) = round(zeta^(n)(2)), where zeta^(n) is the n-th derivative of the Riemann zeta function. - Iain Fox, Nov 13 2017
a(n) = (n+1)^(n+1) * Integral_{x=0..1} (x*log(x))^n dx. - Peter James Foreman, Oct 27 2018
Comments