A023199
a(n) is the least k with sigma(k) >= n*k.
Original entry on oeis.org
1, 6, 120, 27720, 122522400, 130429015516800, 1970992304700453905270400, 1897544233056092162003806758651798777216000, 4368924363354820808981210203132513655327781713900627249499856876120704000
Offset: 1
The dominating primes are in
A108402.
Further terms from Devin Kilminster (devin(AT)maths.uwa.edu.au), Mar 10 2003
The term a(10) = 271#23#10! was apparently found independently by
Bodo Zinser and
Don Reble, circa Jul 05 2005
The next term, a(11) = 487#29#10!, was corrected by
Don Reble, Jul 06 2005
a(12) = 857#37#11!42 from
Don Reble, Jul 06 2005
a(14)-a(17) found by
T. D. Noe and rechecked by him Oct 11 2005
a(15) corrected. The conjecture still fails at n=15. -
T. D. Noe, Oct 13 2009
A216756
a(n) = floor(e^e^(n/e^gamma)).
Original entry on oeis.org
2, 5, 21, 219, 12686, 15636041, 4101615513409, 12983864742986180266005, 588668718546098799238432431873920456606, 93859726557327916653208320240553220872245170780539985934198524439788
Offset: 0
a(3) = 219 because exp(exp(n/exp(gamma))) = 219.0062568829....
-
[Floor(Exp(Exp(n/Exp(EulerGamma(RealField(100)))))) : n in [0..9]];
-
Table[Floor[E^E^(n/E^EulerGamma)], {n, 0, 9}]
A352281
Regular triangle read by rows, T(n,k) is the least integer m such that sigma(m)/m is greater than n + (k-1)/n.
Original entry on oeis.org
2, 12, 36, 180, 720, 2520, 27720, 110880, 720720, 10810800, 122522400, 1396755360, 6983776800, 160626866400, 4497552259200, 130429015516800, 2021649740510400, 74801040398884800, 3066842656354276800, 263748468446467804800, 18594267025475980238400
Offset: 1
Triangle begins:
2,
12, 36,
180, 720, 2520,
27720, 110880, 720720, 10810800,
122522400, 1396755360, ...
-
isok(i,n,k) = sigma(i)/i > n+(k-1)/n;
T(n,k) = my(i=1); while(!isok(i,n,k), i++); i;
A368063
a(n) is the least number k such that sigma(sigma(k) * k) > n * sigma(k) * k.
Original entry on oeis.org
1, 2, 3, 10, 160, 12155, 26558675
Offset: 0
For n = 4, the divisors of 160 sum to 378. 160 * 378 = 60480, whose divisors sum up to 243840 > 4 * 60480.
-
public static void main(String[] args)
{
long max = 0;
for (long c = 1; c < Math.pow(10, 8); c = c + 1)
{
if (factorSum(factorSum(c) * c) > max * factorSum(c) * c)
{
System.out.println(c + ": " + factorSum(c) * c);
max = max + 1;
}
}
}
public static long factorSum(long n)
{
long sum = 0;
for (long c = 1; c <= Math.sqrt(n); c = c + 1)
{
if (n % c == 0)
{
sum = sum + c;
if (c != Math.sqrt(n))
{
sum = sum + n / c;
}
}
}
return sum;
}
-
a={}; For[n=0, n<=6, n++, k=1; While[DivisorSigma[1,DivisorSigma[1,k]k] <= n DivisorSigma[1,k] k, k++]; AppendTo[a,k]]; a (* Stefano Spezia, Dec 10 2023 *)
-
a(n) = my(k=1); while (sigma(sigma(k)*k) <= n * sigma(k) * k, k++); k; \\ Michel Marcus, Dec 10 2023
Showing 1-4 of 4 results.
Comments