cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A135960 Indices where records occur in A134852.

Original entry on oeis.org

1, 2, 4, 14, 37, 59, 144, 173
Offset: 1

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Crossrefs

Extensions

a(7)-a(8) from Amiram Eldar, Sep 01 2019 (calculated from the b-file at A134852)

A135975 Number of prime factors (without multiplicity) in Mersenne composites A065341.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 2, 5, 4, 5, 3, 5, 4, 3, 6, 4, 3, 4, 3, 4, 4
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

Currently the smallest prime exponent p for which 2^p-1 is incompletely factored is p = 1213. - Gord Palameta, Aug 06 2018

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; AppendTo[k, d]], {n, 1, 40}]; k
    (PrimeNu /@ Select[2^Prime[Range[40]] - 1, ! PrimeQ[#] &]) (* Jean-François Alcover, Aug 13 2014 *)
  • PARI
    forprime(p=1, 1e3, if(!ispseudoprime(2^p-1), print1(omega(2^p-1), ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = A001221(A065341(n)). - Michel Marcus, Aug 07 2018

Extensions

a(29)-a(46) from Felix Fröhlich, Aug 12 2014
a(47)-a(100) from Gord Palameta, Aug 07 2018

A135953 (Nonprime Fibonacci numbers with prime indices) that have exactly 2 prime factors.

Original entry on oeis.org

4181, 1346269, 165580141, 53316291173, 956722026041, 2504730781961, 308061521170129, 806515533049393, 14472334024676221, 1779979416004714189, 573147844013817084101, 10284720757613717413913, 26925748508234281076009
Offset: 1

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Comments

Conjecture: All numbers in this sequence are products of two sums of two squares, e.g. 4181 = 37*113 = (1^2+6^2)*(7^2+8^2), 1346269 = 557*2417 = (14^2+19^2)*(4^2+49^2).

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ !PrimeQ[Fibonacci[Prime[n]]], c = Length[FactorInteger[Fibonacci[Prime[n]]]]; If[c == 2, AppendTo[k, Fibonacci[Prime[n]]]]], {n, 1, 50}]; k
    Select[Fibonacci[Prime[Range[30]]],PrimeOmega[#]==2&] (* Harvey P. Dale, Feb 18 2012 *)

A135957 a(n) = smallest k such that Fibonacci(prime(k)) has exactly n prime factors.

Original entry on oeis.org

1, 2, 8, 12, 25, 50, 96, 73, 164
Offset: 0

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Crossrefs

Extensions

Edited and extended by David Wasserman, Mar 26 2008

A135977 Mersenne composites (A065341) with exactly 3 prime factors.

Original entry on oeis.org

536870911, 8796093022207, 140737488355327, 9007199254740991, 2361183241434822606847, 9444732965739290427391, 604462909807314587353087
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k

Formula

a(n) = 2^A344515(n) - 1. - Amiram Eldar, May 23 2021

A135956 Members of A050937 (nonprime Fibonacci numbers with prime index) with 5 or more distinct prime factors.

Original entry on oeis.org

322615043836854783580186309282650000354271239929, 1476475227036382503281437027911536541406625644706194668152438732346449273, 22334640661774067356412331900038009953045351020683823507202893507476314037053
Offset: 1

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Comments

Conjecture: all numbers in this sequence are product of 5 or more sum of two squares

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ !PrimeQ[Fibonacci[Prime[n]]], c = Length[FactorInteger[Fibonacci[Prime[n]]]]; Print[n]; If[c > 4, Print[Fibonacci[Prime[n]]]; AppendTo[k, Fibonacci[Prime[n]]]]], {n, 1, 100}]; k

Formula

A050937 INTERSECT { A051270 UNION A074969 UNION ... } = A050937 MINUS {A135955 UNION A135954 UNION A135953}. - R. J. Mathar, Jun 09 2008

Extensions

Edited by R. J. Mathar, Jun 09 2008

A135954 Nonprime Fibonacci numbers with prime indices (A050937) that have exactly 3 prime factors.

Original entry on oeis.org

24157817, 44945570212853, 1500520536206896083277, 50095301248058391139327916261, 11463113765491467695340528626429782121, 30010821454963453907530667147829489881, 2211236406303914545699412969744873993387956988653, 103881042195729914708510518382775401680142036775841
Offset: 1

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Comments

Conjecture: All numbers in this sequence are products of three sums of two squares.

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ !PrimeQ[Fibonacci[Prime[n]]], c = Length[FactorInteger[Fibonacci[Prime[n]]]]; If[c == 3, AppendTo[k, Fibonacci[Prime[n]]]]], {n, 1, 50}]; k
  • PARI
    f(n) = forprime(x=2, n, p=fibonacci(x); if(!isprime(p) && omega(p) == 3, print1(p", "))) \\ Georg Fischer, Feb 15 2025

Extensions

a(6)-a(8) from Georg Fischer, Feb 15 2025

A135955 (Nonprime Fibonacci numbers with prime indices, A050937) which have exactly 4 prime factors.

Original entry on oeis.org

83621143489848422977, 6161314747715278029583501626149, 289450641941273985495088042104137, 5193981023518027157495786850488117, 66233869353085486281758142155705206899077
Offset: 1

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Comments

Conjecture: All numbers in this sequence are products of four sums of two squares.

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ !PrimeQ[Fibonacci[Prime[n]]], c = Length[FactorInteger[Fibonacci[Prime[n]]]]; If[c == 4, AppendTo[k, Fibonacci[Prime[n]]]]], {n, 1, 50}]; k

A135976 Mersenne composites (A065341) with exactly 2 prime factors.

Original entry on oeis.org

2047, 8388607, 137438953471, 2199023255551, 576460752303423487, 147573952589676412927, 9671406556917033397649407, 158456325028528675187087900671, 2535301200456458802993406410751
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Maple
    A135976 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (nops(numtheory[factorset](i)) = 2) then
       RETURN (i)
    fi: end: [ seq(A135976(n), n=1..26) ]; # Jani Melik, Feb 09 2011
  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k
  • PARI
    forprime(p=1, 1e2, if(bigomega(2^p-1)==2, print1(2^p-1, ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = 2^A135978(n) - 1. - Amiram Eldar, May 23 2021

A135978 Primes p such that 2^p-1 has exactly 2 prime factors.

Original entry on oeis.org

11, 23, 37, 41, 59, 67, 83, 97, 101, 103, 109, 131, 137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347, 373, 379, 421, 457, 487, 523, 727, 809, 881, 971, 983, 997, 1061, 1063
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

a(40)>=1277. - Amiram Eldar, Sep 29 2018

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, Prime[n]]]], {n, 1, 40}]; k

Extensions

a(17)-a(37) from Arkadiusz Wesolowski, Jan 26 2012
a(38)-a(39) from Amiram Eldar, Sep 29 2018
Showing 1-10 of 18 results. Next