cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A019863 Decimal expansion of sin(3*Pi/10) (sine of 54 degrees, or cosine of 36 degrees).

Original entry on oeis.org

8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Midsphere radius of regular icosahedron with unit edges.
Also half of the golden ratio (A001622). - Stanislav Sykora, Jan 30 2014
Andris Ambainis (see Aaronson link) observes that combining the results of Barak-Hardt-Haviv-Rao with Dinur-Steurer yields the maximal probability of winning n parallel repetitions of a classical CHSH game (see A201488) asymptotic to this constant to the power of n, an improvement on the naive probability of (3/4)^n. (All the random bits are received upfront but the players cannot communicate or share an entangled state.) - Charles R Greathouse IV, May 15 2014
This is the height h of the isosceles triangle in a regular pentagon, in length units of the circumscribing radius, formed by a side as base and two adjacent radii. h = sin(3*Pi/10) = cos(Pi/5) (radius 1 unit). - Wolfdieter Lang, Jan 08 2018
Also the limiting value(L) of "r" which is abscissa of the vertex of the parabola F(n)*x^2 - F(n+1)*x + F(n + 2)(where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Feb 24 2021

Examples

			0.80901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A239798 (dodecahedron).

Programs

Formula

Equals (1+sqrt(5))/4 = cos(Pi/5) = sin(3*Pi/10). - R. J. Mathar, Jun 18 2006
Equals 2F1(4/5,1/5;1/2;3/4) / 2 = A019827 + 1/2. - R. J. Mathar, Oct 27 2008
Equals A001622 / 2. - Stanislav Sykora, Jan 30 2014
phi / 2 = (i^(2/5) + i^(-2/5)) / 2 = i^(2/5) - (sin(Pi/5))*i = i^(-2/5) + (sin(Pi/5))*i = i^(2/5) - (cos(3*Pi/10))*i = i^(-2/5) + (cos(3*Pi/10))*i. - Jaroslav Krizek, Feb 03 2014
Equals 1/A134972. - R. J. Mathar, Jan 17 2021
Equals 2*A019836*A019872. - R. J. Mathar, Jan 17 2021
Equals (A094214 + 1)/2 or 1/(2*A094214). - Burak Muslu, Feb 24 2021
Equals hypergeom([-2/5, -3/5], [6/5], -1) = hypergeom([-1/5, 3/5], [6/5], 1) = hypergeom([1/5, -3/5], [4/5], 1). - Peter Bala, Mar 04 2022
Equals Product_{k>=1} (1 - (-1)^k/A001611(k)). - Amiram Eldar, Nov 28 2024
Equals 2*A134944 = 3*A134946 = A187426-11/10 = A296182-1. - Hugo Pfoertner, Nov 28 2024
Equals A134945/4. Root of 4*x^2-2*x-1=0. - R. J. Mathar, Aug 29 2025

A034896 Number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.

Original entry on oeis.org

1, 4, 4, 4, 20, 24, 4, 32, 52, 4, 24, 48, 20, 56, 32, 24, 116, 72, 4, 80, 120, 32, 48, 96, 52, 124, 56, 4, 160, 120, 24, 128, 244, 48, 72, 192, 20, 152, 80, 56, 312, 168, 32, 176, 240, 24, 96, 192, 116, 228, 124, 72, 280, 216, 4, 288, 416, 80, 120, 240, 120, 248, 128, 32, 500
Offset: 0

Views

Author

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 16 of the 126 eta-quotients listed in Table 1 of Williams 2012. - Michael Somos, Nov 10 2018

Examples

			G.f. = 1 + 4*x + 4*x^2 + 4*x^3 + 20*x^4 + 24*x^5 + 4*x^6 + 32*x^7 + ... - _Michael Somos_, Nov 10 2018
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 223, Entry 3(iv).
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 229.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.3), p. 76, Eq. (31.43).

Crossrefs

Programs

  • Mathematica
    A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Table[A034896[n], {n, 0, 50}] (* G. C. Greubel, Dec 24 2017 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 4 DivisorSum[ n, # KroneckerSymbol[ 9, #] (-1)^(n + #) &]]; (* Michael Somos, Nov 10 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^10 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A))^4, n))}; /* Michael Somos, Nov 10 2018 */

Formula

Expansion of theta_3(q)^2*theta_3(q^3)^2.
G.f.: s(2)^10*s(6)^10/(s(1)*s(3)*s(4)*s(12))^4, where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]
Fine gives an explicit formula for a(n) in terms of the divisors of n.
From Michael Somos, Nov 10 2018: (Start)
Expansion of (a(q) + 2*a(q^4))^2 / 9 = (a(q)^2 - 2*a(q^2)^2 + 4*a(q^4)^2) / 3 in powers of q where a() is a cubic AGM theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: 1 + 4 Sum_{k>0} k x^k / (1 - (-x)^k) Kronecker(9, k).
a(n) = 1 + 4 * A113262(n) = (-1)^n * A134946(n). Convolution square of A033716.
a(n) = 4 * (s(n) - 2*s(n/2) - 3*s(n/3) + 4*s(n/4) + 6*s(n/6) - 12*s(n/12)) if n>0 where s(x) = sum of divisors of x for integer x else 0. (End)

A377805 Decimal expansion of the volume of a snub dodecahedron with unit edge length.

Original entry on oeis.org

3, 7, 6, 1, 6, 6, 4, 9, 9, 6, 2, 7, 3, 3, 3, 6, 2, 9, 7, 5, 7, 7, 7, 6, 7, 3, 6, 7, 1, 3, 0, 2, 7, 1, 4, 3, 4, 0, 3, 5, 5, 2, 8, 9, 8, 7, 3, 4, 8, 8, 0, 9, 8, 9, 6, 0, 4, 9, 6, 8, 9, 7, 3, 0, 2, 9, 9, 3, 6, 2, 0, 0, 7, 5, 7, 8, 7, 6, 4, 1, 6, 7, 9, 4, 6, 0, 9, 2, 9, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 09 2024

Keywords

Examples

			37.616649962733362975777673671302714340355289873...
		

Crossrefs

Cf. A377804 (surface area), A377806 (circumradius), A377807 (midradius).
Cf. A102769 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[((3*GoldenRatio + 1)*#*(# + 1) - GoldenRatio/6 - 2)/Sqrt[3*#^2 - GoldenRatio^2], 10, 100]] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Volume"], 10, 100]]

Formula

Equals ((3*phi + 1)*xi*(xi + 1) - phi/6 - 2)/sqrt(3*xi^2 - phi^2) = (A090550*xi*(xi + 1) - A134946 - 2)/sqrt(3*xi^2 - A104457), where phi = A001622 and xi = A377849.
Equals the largest real root of 2176782336*x^12 - 3195335070720*x^10 + 162223191936000*x^8 + 1030526618040000*x^6 + 6152923794150000*x^4 - 182124351550575000*x^2 + 187445810737515625.

A386691 Decimal expansion of the volume of a parabidiminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

3, 6, 9, 6, 7, 2, 3, 3, 1, 4, 5, 8, 3, 1, 5, 8, 0, 8, 0, 3, 4, 0, 9, 7, 8, 0, 5, 7, 2, 7, 6, 0, 6, 3, 5, 2, 9, 5, 3, 3, 8, 4, 8, 6, 3, 3, 0, 0, 9, 6, 0, 4, 7, 7, 0, 2, 2, 5, 7, 4, 7, 7, 0, 4, 5, 0, 8, 7, 6, 7, 4, 3, 8, 0, 3, 1, 5, 0, 4, 0, 8, 2, 8, 4, 5, 3, 4, 5, 3, 4
Offset: 2

Views

Author

Paolo Xausa, Jul 30 2025

Keywords

Comments

The parabidiminished rhombicosidodecahedron is Johnson solid J_80.
Also the volume of a metabidiminished rhombicosidodecahedron and a gyrate bidiminished rhombicosidodecahedron (Johnson solids J_81 and J_82, respectively) with unit edges.

Examples

			36.967233145831580803409780572760635295338486330...
		

Crossrefs

Cf. A386692 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/3*(11 + 5*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J80", "Volume"], 10, 100]]

Formula

Equals (5/3)*(11 + 5*sqrt(5)) = (5/3)*(11 + 5*A002163).
Equals A185093 - 2*A179590.
Equals (50/3)*A001622 + 10 = A134946*100 + 10.
Equals the largest root of 9*x^2 - 330*x - 100.

A384682 Decimal expansion of (5/6)*phi = 5*(1 + sqrt(5))/12, where phi is the golden ratio.

Original entry on oeis.org

1, 3, 4, 8, 3, 6, 1, 6, 5, 7, 2, 9, 1, 5, 7, 9, 0, 4, 0, 1, 7, 0, 4, 8, 9, 0, 2, 8, 6, 3, 8, 0, 3, 1, 7, 6, 4, 7, 6, 6, 9, 2, 4, 3, 1, 6, 5, 0, 4, 8, 0, 2, 3, 8, 5, 1, 1, 2, 8, 7, 3, 8, 5, 2, 2, 5, 4, 3, 8, 3, 7, 1, 9, 0, 1, 5, 7, 5, 2, 0, 4, 1, 4, 2, 2, 6, 7
Offset: 1

Views

Author

Kritsada Moomuang, Jun 06 2025

Keywords

Examples

			1.34836165729157904017...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio * 5/6, 10, 100, 0][[1]]

Formula

Minimal polynomial: 36*x^2 - 30*x - 25.
Equals Integral_{x=0..1} sqrt(x + sqrt(x + sqrt(x + ...))) dx.
Equals Integral_{x=0..1} (1 + sqrt(1 + 4*x))/2 dx.
Equals 10*A134944/3 = 5*A134946. - Hugo Pfoertner, Jun 07 2025

A290013 Length of the period of the continued fraction expansion of phi/n where phi is the golden ratio.

Original entry on oeis.org

1, 1, 2, 2, 1, 6, 2, 2, 6, 5, 4, 4, 1, 10, 8, 4, 3, 2, 8, 14, 2, 12, 10, 4, 11, 5, 14, 10, 4, 28, 8, 8, 8, 1, 20, 2, 7, 4, 8, 14, 6, 6, 18, 8, 24, 6, 2, 4, 22, 31, 12, 14, 9, 10, 2, 12, 16, 12, 20, 20, 5, 8, 8, 20, 13, 20, 22, 2, 10, 52, 28, 2, 15, 19, 36, 4
Offset: 1

Views

Author

Keywords

Comments

We calculated the continued fraction expansion of phi/n and observed that the expansion is periodic after the first nonzero term. We tracked the periodicity of the expansions and present them here. The authors acknowledge the National Science Foundation (DMS-1560019) and Muhlenberg College for supporting the REU (Research Experiences for Undergraduates) on which this sequence is based.

Crossrefs

Cf. A001622 (phi), A019863 (phi/2), A134943 (phi/3), A134944 (phi/4), A134946 (phi/6).

Programs

  • Mathematica
    a[n_] := ContinuedFraction[GoldenRatio/n] // Last // Length; Array[a, 80] (* Jean-François Alcover, Jul 28 2017 *)
Showing 1-6 of 6 results.