A247220
Numbers k such that k^2 + 1 divides 2^k + 1.
Original entry on oeis.org
0, 2, 4, 386, 20136, 59140, 373164544
Offset: 1
0 is in this sequence because 0^2 + 1 = 1 divides 2^0 + 1 = 2.
-
for(n=0,10^5,if(Mod(2,n^2+1)^n==-1,print1(n,", "))); \\ Joerg Arndt, Nov 30 2014
-
from gmpy2 import powmod
A247220_list = [i for i in range(10**7) if powmod(2,i,i*i+1) == i*i]
# Chai Wah Wu, Dec 03 2014
A247165
Numbers m such that m^2 + 1 divides 2^m - 1.
Original entry on oeis.org
0, 16, 256, 8208, 65536, 649800, 1382400, 4294967296
Offset: 1
0 is in this sequence because 0^2 + 1 = 1 divides 2^0 - 1 = 1.
Cf.
A247219 (n^2 - 1 divides 2^n - 1),
A247220 (n^2 + 1 divides 2^n + 1).
-
[n: n in [1..100000] | Denominator((2^n-1)/(n^2+1)) eq 1];
-
select(n -> (2 &^ n - 1) mod (n^2 + 1) = 0, [$1..10^6]); # Robert Israel, Dec 02 2014
-
a247165[n_Integer] := Select[Range[0, n], Divisible[2^# - 1, #^2 + 1] &]; a247165[1500000] (* Michael De Vlieger, Nov 30 2014 *)
-
for(n=0,10^9,if(Mod(2,n^2+1)^n==+1,print1(n,", "))); \\ Joerg Arndt, Nov 30 2014
-
A247165_list = [n for n in range(10**6) if n == 0 or pow(2,n,n*n+1) == 1]
# Chai Wah Wu, Dec 04 2014
A265285
Carmichael numbers (A002997) k such that k-1 is a square.
Original entry on oeis.org
46657, 2433601, 67371265, 351596817937, 422240040001, 18677955240001, 458631349862401, 286245437364810001, 20717489165917230086401
Offset: 1
46657 is a term because 46657 - 1 = 46656 = 216^2.
2433601 is a term because 2433601 - 1 = 2433600 = 1560^2.
-
isA002997:= proc(n) local F,p;
if n::even or isprime(n) then return false fi;
F:= ifactors(n)[2];
if max(seq(f[2],f=F)) > 1 then return false fi;
andmap(f -> (n-1) mod (f[1]-1) = 0, F)
end proc:
select(isA002997, [seq(4*i^2+1,i=1..10^6)]); # Robert Israel, Dec 08 2015
-
is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
for(n=1, 1e10, if(is_c(n) && issquare(n-1), print1(n, ", ")))
-
lista(kmax) = {my(m); for(k = 2, kmax, m = k^2 + 1; if(!isprime(m), f = factor(k); for(i = 1, #f~, f[i, 2] *= 2); fordiv(f, d, if(!(m % (d+1)) && isprime(d+1), m /= (d+1))); if(m == 1, print1(k^2 + 1, ", ")))); } \\ Amiram Eldar, May 02 2024
A265328
Carmichael numbers (A002997) k such that k-1 is a perfect power (A001597).
Original entry on oeis.org
1729, 46657, 2433601, 2628073, 19683001, 67371265, 110592000001, 351596817937, 422240040001, 432081216001, 2116874304001, 3176523000001, 18677955240001, 458631349862401, 286245437364810001, 312328165704192001, 12062716067698821000001, 20717489165917230086401, 211215936967181638848001, 411354705193473163968001
Offset: 1
1729 = 7*13*19 is a term because 1729 - 1 = 1728 = 12^3, and 7-1 = 6, 13-1 = 12 and 19-1 = 18 can be all constructed from the primes available in 1728 = (2^6 * 3^3).
2433601 = 17*37*53*73 is a term because 2433601 - 1 = 2433600 = 1560^2, and 16, 36, 52 and 72 can be all constructed from the primes available in 2433600 = (2^6 * 3^2 * 5^2 * 13^2).
67371265 = 5*13*37*109*257 is a term because 67371264 = 8208^2, and 4 (= 2*2), 12 (= 2*2*3), 36 (= 2*2*3*3), 108 (= 2*2*3*3*3) and 256 (= 2^8) can be all constructed from the primes available in 67371264 = (2^8 * 3^6 * 19^2).
- G. Tarry, I. Franel, A. Korselt, and G. Vacca, Problème chinois, L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
- Samuel S. Wagstaff, Ramanujan's taxicab number and its ilk, The Ramanujan Journal, Vol. 64, No. 3 (2024), pp. 761-764; ResearchGate link, author's copy.
- Eric Weisstein's World of Mathematics, Carmichael Number.
- Index entries for sequences related to Carmichael numbers.
-
Select[Cases[Range[1, 10^7, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n], GCD @@ FactorInteger[# - 1][[All, 2]] > 1 &] (* Michael De Vlieger, Dec 14 2015, after Ant King at A001597 and Artur Jasinski at A002997 *)
-
is_c(n)={my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
for(n=1, 1e10, if(is_c(n) && ispower(n-1), print1(n, ", ")))
-
use ntheory ":all"; foroddcomposites { say if is_power($-1) && is_carmichael($) } 1e8; # Dana Jacobsen, May 05 2017
A270840
Numbers n such that n^3 + 1 is a 2-pseudoprime (or Sarrus number).
Original entry on oeis.org
12, 36, 138, 270, 546, 4800, 7560, 12840, 14700, 358200, 678480, 16139970, 22934100, 55058580, 59553720, 74371320, 113068380, 116605860, 242699310, 997521210, 1592680320, 1652749200, 3190927740, 5088964800, 6974736756, 9214178820
Offset: 1
A333316
Numbers k such that k^2 + 1 is a Fermat pseudoprime to base 3.
Original entry on oeis.org
216, 660, 1484, 1560, 8208, 52164, 544320, 592956, 649800, 4321800, 5103210, 6182220, 10621380, 21415680, 24471720, 135307008, 359624088, 535019100, 1071782250, 1113233520, 1227427740, 1527496740, 9462748008, 143935711920
Offset: 1
216 is a term since 216^2 + 1 = 46657 is a Fermat pseudoprime to base 3.
Showing 1-6 of 6 results.
Comments