cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A110162 Riordan array ((1-x)/(1+x), x/(1+x)^2).

Original entry on oeis.org

1, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Inverse of Riordan array A094527. Rows sums are A099837. Diagonal sums are A110164. Product of Riordan array A102587 and inverse binomial transform (1/(1+x), x/(1+x)).
Coefficients of polynomials related to Cartan matrices of types C_n and B_n: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2), with p(x,0) = 1; p(x,1) = 2-x; p(x,2) = x^2-4*x-2. - Roger L. Bagula, Apr 12 2008
From Wolfdieter Lang, Nov 16 2012: (Start)
The alternating row sums are given in A219233.
For n >= 1 the row polynomials in the variable x^2 are R(2*n,x):=2*T(2*n,x/2) with Chebyshev's T-polynomials. See A127672 and also the triangle A127677.
(End)
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x)^2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 - 2*x + sqrt(1 - 4*x))/2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

Examples

			Triangle T(n,k) begins:
m\k  0    1    2     3     4     5     6    7    8   9 10 ...
0:   1
1:  -2    1
2:   2   -4    1
3:  -2    9   -6     1
4:   2  -16   20    -8     1
5:  -2   25  -50    35   -10     1
6:   2  -36  105  -112    54   -12     1
7:  -2   49 -196   294  -210    77   -14    1
8:   2  -64  336  -672   660  -352   104  -16    1
9:  -2   81 -540  1386 -1782  1287  -546  135  -18   1
10:  2 -100  825 -2640  4290 -4004  2275 -800  170 -20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 16 2012
Row polynomial n=2: P(2,x) = 2 - 4*x + x^2. R(4,x):= 2*T(4,x/2) = 2 - 4*x^2 + x^4. For P and R see a comment above. - _Wolfdieter Lang_, Nov 16 2012.
		

Crossrefs

Cf. A128411. See A127677 for an almost identical triangle.

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*(Binomial(n+k,n-k) + Binomial(n+k-1,n-k-1)): k in [0..n]]: n in [0.. 12]]; // Vincenzo Librandi, Jun 30 2015
    
  • Mathematica
    Table[If[n==0 && k==0, 1, (-1)^(n-k)*(Binomial[n+k, n-k] + Binomial[n+k-1, n-k-1])], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 16 2018 *)
  • PARI
    {T(n,k) = (-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1))};
    for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 16 2018
    
  • Sage
    [[(-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 16 2018

Formula

T(n,k) = (-1)^(n-k)*(C(n+k,n-k) + C(n+k-1,n-k-1)), with T(0,0) = 1. - Paul Barry, Mar 22 2007
From Wolfdieter Lang, Nov 16 2012: (Start)
O.g.f. row polynomials P(n,x) := Sum(T(n,k)*x^k, k=0..n): (1-z^2)/(1+(x-2)*z+z^2) (from the Riordan property).
O.g.f. column No. k: ((1-x)/(1+x))*(x/(1+x)^2)^k, k >= 0.
T(0,0) = 1, T(n,k) = (-1)^(n-k)*(2*n/(n+k))*binomial(n+k,n-k), n>=1, and T(n,k) = 0 if n < k. (From the Chebyshev T-polynomial formula due to Waring's formula.)
(End)
T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 29 2013

A109954 Riordan array (1/(1+x)^3,x/(1+x)^2).

Original entry on oeis.org

1, -3, 1, 6, -5, 1, -10, 15, -7, 1, 15, -35, 28, -9, 1, -21, 70, -84, 45, -11, 1, 28, -126, 210, -165, 66, -13, 1, -36, 210, -462, 495, -286, 91, -15, 1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 66, -715, 3003, -6435, 8008, -6188, 3060, -969, 190, -21, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Inverse of Riordan array (c(x)^3,x*c(x)^2) or A050155, with c(x) the g.f. of A000108. Unsigned array is the Riordan array (1/(1-x)^3,x/(1-x)^2), with T(n,k) = binomial(n+k+2,2*k+2).
Triangle of coefficients of polynomials defined by: c0=1; p(x, n) = (2 + c0 - x)*p(x, n - 1) + (-1 - c0 (2 - x))*p(x, n - 2) + c0*p(x, n - 3). Setting c0=0 gives A136674. - Roger L. Bagula, Apr 08 2008
The triangle entries Ts(n,k):=(-1)^(n-1)*A109954(n-1, k) = ((-1)^k)*binomial(n+k+1, 2(k+1)), n>=1, k=0..n-1, are the coefficients of x^(2*k) of the polynomial P(n,x^2) := (1 - (-1)^n*S(2*n,x))/x^2, with the Chebyshev S-polynomials with coefficient triangle given in A049310.
P(n,x^2) = - R(n+1,x)*S(n-1,x)/x^2 if n is even and P(n,x^2) = R(n,x)*S(n,x)/x^2 if n is odd, with R the monic integer Chebyshev T-polynomials with coefficient triangle given in A127672. - Wolfdieter Lang, Oct 24 2012.

Examples

			Triangle T(n, k) begins:
  n/k   0     1      2     3     4      5     6    7   8   9 10
  0:    1
  1:   -3     1
  2:    6    -5      1
  3:  -10    15     -7     1
  4:   15   -35     28    -9     1
  5:  -21    70    -84    45   -11      1
  6:   28  -126    210  -165    66    -13     1
  7:  -36   210   -462   495  -286     91   -15    1
  8:   45  -330    924 -1287  1001   -455   120  -17   1
  9:  -55   495  -1716  3003 -3003   1820  -680  153 -19   1
  10:  66  -715   3003 -6435  8008  -6188  3060 -969 190 -21  1
  ... Reformatted and extended by Wolfdieter Lang, Oct 24 2012.
		

Crossrefs

Programs

  • Mathematica
    c0 = 1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] := p[x, n] = (2 + c0 - x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] - Roger L. Bagula, Apr 08 2008

Formula

Number triangle T(n, k) = (-1)^(n+k)*binomial(n+k+2, 2*k+2) [offset (0, 0)].

A092879 Triangle of coefficients of the product of two consecutive Fibonacci polynomials.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 7, 2, 1, 7, 16, 13, 3, 1, 9, 29, 40, 22, 3, 1, 11, 46, 91, 86, 34, 4, 1, 13, 67, 174, 239, 166, 50, 4, 1, 15, 92, 297, 541, 553, 296, 70, 5, 1, 17, 121, 468, 1068, 1461, 1163, 496, 95, 5, 1, 19, 154, 695, 1912, 3300, 3544, 2269, 791, 125, 6, 1, 21, 191
Offset: 0

Views

Author

Michael Somos, Mar 10 2004

Keywords

Comments

The Fibonacci polynomials are defined by F(0,x) = 1, F(1,x) = 1 and F(n, x) = F(n-1, x) + x*F(n-2, x).
This is also the reflected triangle of coefficients of the polynomials defined by the recursion: c0=-1; p(x, n) = (2 + c0 - x)*p(x, n - 1) + (-1 - c0*(2 - x))*p(x, n - 2) + c0*p(x, n - 3). - Roger L. Bagula, Apr 09 2008

Examples

			Triangle begins;
  1;
  1,1;
  1,3,2;
  1,5,7,2;
  1,7,16,13,3;
  1,9,29,40,22,3;
  ...
F(3,x) = 1 + 2*x and F(4,x) = 1 + 3*x + x^2 so F(3,x)*F(4,x)=(1 + 3*x + x^2)*(1 + 2*x) = 1 + 5*x + 7*x^2 + 2*x^3 leads to T(3,k) = [1,5,7,2].
		

Crossrefs

Row sums are A001654(n+1).

Programs

  • Maple
    T:=proc(n,k): add((-1)^(i+k)*binomial(i+2*n-2*k+1,i), i=0..k) end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
    T:=proc(n,k): coeff(F(n, x)*F(n+1, x), x, k) end: F:=proc(n, x) option remember: if n=0 then 1 elif n=1 then 1 else procname(n-1, x) + x*procname(n-2, x) fi: end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
  • Mathematica
    c0 = -1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] :=p[x, n] = (2 + c0 -x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[Reverse[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
  • PARI
    T(n,k)=local(m);if(k<0 || k>n,0,n++; m=contfracpnqn(matrix(2,n,i,j,x)); polcoeff(m[1,1]*m[2,1]/x^n,n-k))

Formula

From Johannes W. Meijer, Jul 20 2011: (Start)
T(n, k) = Sum_{i=0..k} (-1)^(i+k)*binomial(i+2*n-2*k+1, i).
T(n, k) = A035317(2*n-k, k) = A158909(n, n-k.) (End)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) - T(n-3,k-3), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 12 2013

Extensions

Edited and information added by Johannes W. Meijer, Jul 20 2011

A135552 Riordan array (1/((1-2x)(1-x)^2), -x/(1-x)^2).

Original entry on oeis.org

1, 4, -1, 11, -6, 1, 26, -22, 8, -1, 57, -64, 37, -10, 1, 120, -163, 130, -56, 12, -1, 247, -382, 386, -232, 79, -14, 1, 502, -848, 1024, -794, 378, -106, 16, -1, 1013, -1816, 2510, -2380, 1471, -576, 137, -18, 1, 2036, -3797, 5812, -6476, 4944, -2517, 834, -172, 20, -1, 4083, -7814, 12911, -16384, 14893, -9402, 4048, -1160, 211, -22, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 08 2008

Keywords

Comments

Row sums are A024495. First column is essentially A000295, second column is essentially -A002663. - Ralf Stephan, Jan 03 2014

Examples

			{1},
{4, -1},
{11, -6, 1},
{26, -22, 8, -1},
{57, -64, 37, -10, 1},
{120, -163, 130, -56, 12, -1},
{247, -382, 386, -232, 79, -14, 1},
{502, -848, 1024, -794, 378, -106, 16, -1},
{1013, -1816, 2510, -2380, 1471, -576, 137, -18, 1},
{2036, -3797, 5812, -6476, 4944, -2517, 834, -172, 20, -1},
{4083, -7814, 12911, -16384, 14893, -9402, 4048, -1160, 211, -22, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, x, n, a]; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 4 - x; p[x_, n_] := p[x, n] = (4 - x)*p[x, n - 1] + (-5 + 2*x)*p[x, n - 2] + 2*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]

Formula

Coefficients of polynomials defined by recurrence: c0=2; p(x, n) = (2 + c0 - x)*p(x, n - 1) + (-1 - c0 (2 - x))*p(x, n - 2) + c0*p(x, n - 3).

Extensions

New name from Ralf Stephan, Jan 03 2014

A173814 Coefficients of Hadamard Cartan G_2 self-similar 2^n matrices:M={{2, -1}, {-3, 2}}.

Original entry on oeis.org

1, 1, -4, 1, 1, -16, 30, -16, 1, 1, -64, 676, -2752, 4678, -2752, 676, -64, 1, 1, -256, 13560, -316160, 3830300, -25002240, 87841480, -180202240, 227671110, -180202240, 87841480, -25002240, 3830300, -316160, 13560, -256, 1, 1, -1024
Offset: 0

Views

Author

Roger L. Bagula, Feb 25 2010

Keywords

Comments

Row sums are:
{1, -2, 0, 400, 0, 231040000000000, 0,...}.

Examples

			{1},
{1, -4, 1},
{1, -16, 30, -16, 1},
{1, -64, 676, -2752, 4678, -2752, 676, -64, 1},
{1, -256, 13560, -316160, 3830300, -25002240, 87841480, -180202240, 227671110, -180202240, 87841480, -25002240, 3830300, -316160, 13560, -256, 1},
{1, -1024, 255376, -30325760, 2060069240, -86239093760, 2306160223920, -40571580718080, 489632650203420, -4209374685189120, 26512089196724880, -124638699726597120, 442120325884773960, -1188638208146519040, 2420933452415430960, -3721572797083978752, 4298314898249481798, -3721572797083978752, 2420933452415430960, -1188638208146519040, 442120325884773960, -124638699726597120, 26512089196724880, -4209374685189120, 489632650203420, -40571580718080, 2306160223920, -86239093760, 2060069240, -30325760, 255376, -1024, 1}, ...
		

Crossrefs

Programs

  • Mathematica
    MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]]
    KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
    M1 = M;
    N1 = N;
    LM = Length[M1];
    LN = Length[N1];
    Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
    Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
    N2 = {};
    Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
    N2 = Flatten[N2];
    Partition[N2, LM*LN, LM*LN]]
    HadamardMatrix[2] := {{2, -1}, {-3, 2}}
    HadamardMatrix[n_] := Module[{m},
    m = {{2, -1}, {-3, 2}};
    KroneckerProduct[m, HadamardMatrix[n/2]]]
    Table[HadamardMatrix[2^n], {n, 1, 4}]
    Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[ HadamardMatrix[2^n], x], x], {n, 1, 6}]]
    Flatten[%]

Formula

M(2)={{2, -1}, {-3, 2}};
M(4)={{4, -2, -2, 1}, {-6, 4, 3, -2}, {-6, 3, 4, -2}, {9, -6, -6, 4}},etc.

A136321 Triangular sequence of coefficients of a polynomial recursion for C_n and B_n Cartan matrices: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) p(x,n)=x2-4*x+4-m:m=5;(related sequence: A_n:m=1,G_n,m=3,B_n,C_n,m=2) This triangular sequence is an extension to the Cartan pattern of matrices.

Original entry on oeis.org

1, -2, 1, -1, -4, 1, 4, 6, -6, 1, -7, -4, 17, -8, 1, 10, -5, -32, 32, -10, 1, -13, 24, 42, -88, 51, -12, 1, 16, -56, -28, 186, -180, 74, -14, 1, -19, 104, -42, -312, 495, -316, 101, -16, 1, 22, -171, 216, 396, -1122, 1053, -504, 132, -18, 1, -25, 260, -561, -264, 2145, -2912, 1960, -752, 167, -20, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 12 2008

Keywords

Comments

Row sums are:
{1, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1}
This sequence is also related to different p(x,2) start:
1) A_n like sequence A053122 ( sign change)
2) my G_n matrix A136674
3) B_n,C_n A110162

Examples

			{1},
{-2, 1},
{-1, -4, 1},
{4, 6, -6, 1},
{-7, -4, 17, -8, 1},
{10, -5, -32, 32, -10, 1},
{-13, 24, 42, -88,51, -12, 1},
{16, -56, -28,186, -180, 74, -14, 1},
{-19, 104, -42, -312, 495, -316, 101, -16, 1},
{22, -171, 216, 396, -1122, 1053, -504, 132, -18, 1},
{-25, 260, -561, -264,2145, -2912, 1960, -752, 167, -20, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, a] p[x, 0] = 1; p[x, 1] = -2 + x; p[x, 2] = x^2 - 4*x - 1; p[x_, n_] := p[x, n] = (-2 + x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]

Formula

p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) Three start vectors necessary: p(x,0)=1;p(x,1)=2-x; p(x,2)=x^2-4*x-1=CharacteristicPolynomial[{{2, -5}, {-1, 2}}, x] or CharacteristicPolynomial[{{2, -1}, {-5, 2}}, x]

A136329 Triangular sequence of coefficients of a polynomial recursion for C_n and B_n Cartan matrices: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) p(x,n)=x2-4*x+4-m:m=4;(related sequence: A_n:m=1,G_n,m=3,B_n,C_n,m=2) This triangular sequence is an extension to the Cartan pattern of matrices.

Original entry on oeis.org

1, -2, 1, 0, -4, 1, 2, 7, -6, 1, -4, -8, 18, -8, 1, 6, 5, -38, 33, -10, 1, -8, 4, 63, -96, 52, -12, 1, 10, -21, -84, 222, -190, 75, -14, 1, -12, 48, 84, -432, 550, -328, 102, -16, 1, 14, -87, -36, 726, -1342, 1131, -518, 133, -18, 1, -16, 140, -99, -1056, 2860, -3276, 2065, -768, 168, -20, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 12 2008

Keywords

Comments

Row sums are:
{1, -1, -3, 4, -1, -3, 4, -1, -3, 4, -1}
This sequence is also related to different p(x,2) start:
1) A_n like sequence A053122 ( sign change)
2) my G_n matrix A136674
3) B_n,C_n A110162

Examples

			{1},
{-2, 1},
{0, -4, 1},
{2, 7, -6, 1},
{-4, -8, 18, -8, 1},
{6, 5, -38, 33, -10,1},
{-8, 4, 63, -96, 52, -12, 1},
{10, -21, -84, 222, -190, 75, -14, 1},
{-12, 48, 84, -432, 550, -328, 102, -16, 1},
{14, -87, -36, 726, -1342, 1131, -518, 133, -18, 1},
{-16, 140, -99, -1056, 2860, -3276, 2065, -768, 168, -20, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, a] p[x, 0] = 1; p[x, 1] = -2 + x; p[x, 2] = x^2 - 4*x ; p[x_, n_] := p[x, n] = (-2 + x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]

Formula

p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) Three start vectors necessary: p(x,0)=1;p(x,1)=2-x; p(x,2)=x^2-4*x=CharacteristicPolynomial[{{2, -4}, {-1, 2}}, x] or CharacteristicPolynomial[{{2, -1}, {-4, 2}}, x]

A173820 Coefficients of characteristic polynomials of Hadamard Cartan F_2 self-similar 2^n matrices:M={{2, -1}, {-2, 2}}.

Original entry on oeis.org

1, 2, -4, 1, 16, -64, 56, -16, 1, 4096, -32768, 75776, -77824, 39296, -9728, 1184, -64, 1, 4294967296, -68719476736, 375809638400, -1043677052928, 1696981843968, -1726845288448, 1143073669120, -506453819392, 152912134144, -31653363712
Offset: 0

Views

Author

Roger L. Bagula, Feb 25 2010

Keywords

Comments

Row sums are:
{1, -1, -7, -31, -208289151, 199276356275696712709633,
-27294457550222463310332530871924308277403810665846783,...}.

Examples

			{1},
{2, -4, 1},
{ 16, -64, 56, -16, 1},
{4096, -32768, 75776, -77824, 39296, -9728, 1184, -64, 1}, ...
		

Crossrefs

Programs

  • Mathematica
    Clear[HadamardMatrix];
    MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]]
    KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
    M1 = M;
    N1 = N;
    LM = Length[M1];
    LN = Length[N1];
    Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
    Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
    N2 = {};
    Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
    N2 = Flatten[N2];
    Partition[N2, LM*LN, LM*LN]]
    HadamardMatrix[2] := {{2, -1}, {-2, 2}}
    HadamardMatrix[n_] := Module[{m},
    m = {{2, -1}, {-2, 2}};
    KroneckerProduct[m, HadamardMatrix[n/2]]]
    Table[HadamardMatrix[2^n], {n, 1, 4}]
    Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[ HadamardMatrix[2^n], x], x], {n, 1, 6}]]
    Flatten[%]

Formula

M(2)={{2, -1}, {-2, 2}};
M(4)={{4, -2, -2, 1}, {-4, 4, 2, -2}, {-4, 2, 4, -2}, {4, -4, -4, 4}},etc.
Showing 1-8 of 8 results.