A110162
Riordan array ((1-x)/(1+x), x/(1+x)^2).
Original entry on oeis.org
1, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0
Triangle T(n,k) begins:
m\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: -2 1
2: 2 -4 1
3: -2 9 -6 1
4: 2 -16 20 -8 1
5: -2 25 -50 35 -10 1
6: 2 -36 105 -112 54 -12 1
7: -2 49 -196 294 -210 77 -14 1
8: 2 -64 336 -672 660 -352 104 -16 1
9: -2 81 -540 1386 -1782 1287 -546 135 -18 1
10: 2 -100 825 -2640 4290 -4004 2275 -800 170 -20 1
... Reformatted and extended by _Wolfdieter Lang_, Nov 16 2012
Row polynomial n=2: P(2,x) = 2 - 4*x + x^2. R(4,x):= 2*T(4,x/2) = 2 - 4*x^2 + x^4. For P and R see a comment above. - _Wolfdieter Lang_, Nov 16 2012.
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group and Chebyshev polynomials, arXiv:2502.13673 [math.CO], 2025.
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv:1405.6315 [math.CO], 2014.
-
/* As triangle */ [[(-1)^(n-k)*(Binomial(n+k,n-k) + Binomial(n+k-1,n-k-1)): k in [0..n]]: n in [0.. 12]]; // Vincenzo Librandi, Jun 30 2015
-
Table[If[n==0 && k==0, 1, (-1)^(n-k)*(Binomial[n+k, n-k] + Binomial[n+k-1, n-k-1])], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 16 2018 *)
-
{T(n,k) = (-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1))};
for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 16 2018
-
[[(-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 16 2018
A109954
Riordan array (1/(1+x)^3,x/(1+x)^2).
Original entry on oeis.org
1, -3, 1, 6, -5, 1, -10, 15, -7, 1, 15, -35, 28, -9, 1, -21, 70, -84, 45, -11, 1, 28, -126, 210, -165, 66, -13, 1, -36, 210, -462, 495, -286, 91, -15, 1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 66, -715, 3003, -6435, 8008, -6188, 3060, -969, 190, -21, 1
Offset: 0
Triangle T(n, k) begins:
n/k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: -3 1
2: 6 -5 1
3: -10 15 -7 1
4: 15 -35 28 -9 1
5: -21 70 -84 45 -11 1
6: 28 -126 210 -165 66 -13 1
7: -36 210 -462 495 -286 91 -15 1
8: 45 -330 924 -1287 1001 -455 120 -17 1
9: -55 495 -1716 3003 -3003 1820 -680 153 -19 1
10: 66 -715 3003 -6435 8008 -6188 3060 -969 190 -21 1
... Reformatted and extended by Wolfdieter Lang, Oct 24 2012.
-
c0 = 1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] := p[x, n] = (2 + c0 - x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] - Roger L. Bagula, Apr 08 2008
A092879
Triangle of coefficients of the product of two consecutive Fibonacci polynomials.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 5, 7, 2, 1, 7, 16, 13, 3, 1, 9, 29, 40, 22, 3, 1, 11, 46, 91, 86, 34, 4, 1, 13, 67, 174, 239, 166, 50, 4, 1, 15, 92, 297, 541, 553, 296, 70, 5, 1, 17, 121, 468, 1068, 1461, 1163, 496, 95, 5, 1, 19, 154, 695, 1912, 3300, 3544, 2269, 791, 125, 6, 1, 21, 191
Offset: 0
Triangle begins;
1;
1,1;
1,3,2;
1,5,7,2;
1,7,16,13,3;
1,9,29,40,22,3;
...
F(3,x) = 1 + 2*x and F(4,x) = 1 + 3*x + x^2 so F(3,x)*F(4,x)=(1 + 3*x + x^2)*(1 + 2*x) = 1 + 5*x + 7*x^2 + 2*x^3 leads to T(3,k) = [1,5,7,2].
-
T:=proc(n,k): add((-1)^(i+k)*binomial(i+2*n-2*k+1,i), i=0..k) end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
T:=proc(n,k): coeff(F(n, x)*F(n+1, x), x, k) end: F:=proc(n, x) option remember: if n=0 then 1 elif n=1 then 1 else procname(n-1, x) + x*procname(n-2, x) fi: end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
-
c0 = -1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] :=p[x, n] = (2 + c0 -x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[Reverse[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
-
T(n,k)=local(m);if(k<0 || k>n,0,n++; m=contfracpnqn(matrix(2,n,i,j,x)); polcoeff(m[1,1]*m[2,1]/x^n,n-k))
A135552
Riordan array (1/((1-2x)(1-x)^2), -x/(1-x)^2).
Original entry on oeis.org
1, 4, -1, 11, -6, 1, 26, -22, 8, -1, 57, -64, 37, -10, 1, 120, -163, 130, -56, 12, -1, 247, -382, 386, -232, 79, -14, 1, 502, -848, 1024, -794, 378, -106, 16, -1, 1013, -1816, 2510, -2380, 1471, -576, 137, -18, 1, 2036, -3797, 5812, -6476, 4944, -2517, 834, -172, 20, -1, 4083, -7814, 12911, -16384, 14893, -9402, 4048, -1160, 211, -22, 1
Offset: 1
{1},
{4, -1},
{11, -6, 1},
{26, -22, 8, -1},
{57, -64, 37, -10, 1},
{120, -163, 130, -56, 12, -1},
{247, -382, 386, -232, 79, -14, 1},
{502, -848, 1024, -794, 378, -106, 16, -1},
{1013, -1816, 2510, -2380, 1471, -576, 137, -18, 1},
{2036, -3797, 5812, -6476, 4944, -2517, 834, -172, 20, -1},
{4083, -7814, 12911, -16384, 14893, -9402, 4048, -1160, 211, -22, 1}
-
Clear[p, x, n, a]; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 4 - x; p[x_, n_] := p[x, n] = (4 - x)*p[x, n - 1] + (-5 + 2*x)*p[x, n - 2] + 2*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]
A173814
Coefficients of Hadamard Cartan G_2 self-similar 2^n matrices:M={{2, -1}, {-3, 2}}.
Original entry on oeis.org
1, 1, -4, 1, 1, -16, 30, -16, 1, 1, -64, 676, -2752, 4678, -2752, 676, -64, 1, 1, -256, 13560, -316160, 3830300, -25002240, 87841480, -180202240, 227671110, -180202240, 87841480, -25002240, 3830300, -316160, 13560, -256, 1, 1, -1024
Offset: 0
{1},
{1, -4, 1},
{1, -16, 30, -16, 1},
{1, -64, 676, -2752, 4678, -2752, 676, -64, 1},
{1, -256, 13560, -316160, 3830300, -25002240, 87841480, -180202240, 227671110, -180202240, 87841480, -25002240, 3830300, -316160, 13560, -256, 1},
{1, -1024, 255376, -30325760, 2060069240, -86239093760, 2306160223920, -40571580718080, 489632650203420, -4209374685189120, 26512089196724880, -124638699726597120, 442120325884773960, -1188638208146519040, 2420933452415430960, -3721572797083978752, 4298314898249481798, -3721572797083978752, 2420933452415430960, -1188638208146519040, 442120325884773960, -124638699726597120, 26512089196724880, -4209374685189120, 489632650203420, -40571580718080, 2306160223920, -86239093760, 2060069240, -30325760, 255376, -1024, 1}, ...
-
MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]]
KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
M1 = M;
N1 = N;
LM = Length[M1];
LN = Length[N1];
Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
N2 = {};
Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
N2 = Flatten[N2];
Partition[N2, LM*LN, LM*LN]]
HadamardMatrix[2] := {{2, -1}, {-3, 2}}
HadamardMatrix[n_] := Module[{m},
m = {{2, -1}, {-3, 2}};
KroneckerProduct[m, HadamardMatrix[n/2]]]
Table[HadamardMatrix[2^n], {n, 1, 4}]
Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[ HadamardMatrix[2^n], x], x], {n, 1, 6}]]
Flatten[%]
A136321
Triangular sequence of coefficients of a polynomial recursion for C_n and B_n Cartan matrices: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) p(x,n)=x2-4*x+4-m:m=5;(related sequence: A_n:m=1,G_n,m=3,B_n,C_n,m=2) This triangular sequence is an extension to the Cartan pattern of matrices.
Original entry on oeis.org
1, -2, 1, -1, -4, 1, 4, 6, -6, 1, -7, -4, 17, -8, 1, 10, -5, -32, 32, -10, 1, -13, 24, 42, -88, 51, -12, 1, 16, -56, -28, 186, -180, 74, -14, 1, -19, 104, -42, -312, 495, -316, 101, -16, 1, 22, -171, 216, 396, -1122, 1053, -504, 132, -18, 1, -25, 260, -561, -264, 2145, -2912, 1960, -752, 167, -20, 1
Offset: 1
{1},
{-2, 1},
{-1, -4, 1},
{4, 6, -6, 1},
{-7, -4, 17, -8, 1},
{10, -5, -32, 32, -10, 1},
{-13, 24, 42, -88,51, -12, 1},
{16, -56, -28,186, -180, 74, -14, 1},
{-19, 104, -42, -312, 495, -316, 101, -16, 1},
{22, -171, 216, 396, -1122, 1053, -504, 132, -18, 1},
{-25, 260, -561, -264,2145, -2912, 1960, -752, 167, -20, 1}
-
Clear[p, a] p[x, 0] = 1; p[x, 1] = -2 + x; p[x, 2] = x^2 - 4*x - 1; p[x_, n_] := p[x, n] = (-2 + x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]
A136329
Triangular sequence of coefficients of a polynomial recursion for C_n and B_n Cartan matrices: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) p(x,n)=x2-4*x+4-m:m=4;(related sequence: A_n:m=1,G_n,m=3,B_n,C_n,m=2) This triangular sequence is an extension to the Cartan pattern of matrices.
Original entry on oeis.org
1, -2, 1, 0, -4, 1, 2, 7, -6, 1, -4, -8, 18, -8, 1, 6, 5, -38, 33, -10, 1, -8, 4, 63, -96, 52, -12, 1, 10, -21, -84, 222, -190, 75, -14, 1, -12, 48, 84, -432, 550, -328, 102, -16, 1, 14, -87, -36, 726, -1342, 1131, -518, 133, -18, 1, -16, 140, -99, -1056, 2860, -3276, 2065, -768, 168, -20, 1
Offset: 1
{1},
{-2, 1},
{0, -4, 1},
{2, 7, -6, 1},
{-4, -8, 18, -8, 1},
{6, 5, -38, 33, -10,1},
{-8, 4, 63, -96, 52, -12, 1},
{10, -21, -84, 222, -190, 75, -14, 1},
{-12, 48, 84, -432, 550, -328, 102, -16, 1},
{14, -87, -36, 726, -1342, 1131, -518, 133, -18, 1},
{-16, 140, -99, -1056, 2860, -3276, 2065, -768, 168, -20, 1}
-
Clear[p, a] p[x, 0] = 1; p[x, 1] = -2 + x; p[x, 2] = x^2 - 4*x ; p[x_, n_] := p[x, n] = (-2 + x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]
A173820
Coefficients of characteristic polynomials of Hadamard Cartan F_2 self-similar 2^n matrices:M={{2, -1}, {-2, 2}}.
Original entry on oeis.org
1, 2, -4, 1, 16, -64, 56, -16, 1, 4096, -32768, 75776, -77824, 39296, -9728, 1184, -64, 1, 4294967296, -68719476736, 375809638400, -1043677052928, 1696981843968, -1726845288448, 1143073669120, -506453819392, 152912134144, -31653363712
Offset: 0
{1},
{2, -4, 1},
{ 16, -64, 56, -16, 1},
{4096, -32768, 75776, -77824, 39296, -9728, 1184, -64, 1}, ...
-
Clear[HadamardMatrix];
MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]]
KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
M1 = M;
N1 = N;
LM = Length[M1];
LN = Length[N1];
Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
N2 = {};
Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
N2 = Flatten[N2];
Partition[N2, LM*LN, LM*LN]]
HadamardMatrix[2] := {{2, -1}, {-2, 2}}
HadamardMatrix[n_] := Module[{m},
m = {{2, -1}, {-2, 2}};
KroneckerProduct[m, HadamardMatrix[n/2]]]
Table[HadamardMatrix[2^n], {n, 1, 4}]
Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[ HadamardMatrix[2^n], x], x], {n, 1, 6}]]
Flatten[%]
Showing 1-8 of 8 results.
Comments