cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A061242 Primes of the form 9*k - 1.

Original entry on oeis.org

17, 53, 71, 89, 107, 179, 197, 233, 251, 269, 359, 431, 449, 467, 503, 521, 557, 593, 647, 683, 701, 719, 773, 809, 827, 863, 881, 953, 971, 1061, 1097, 1151, 1187, 1223, 1259, 1277, 1367, 1439, 1493, 1511, 1583, 1601, 1619, 1637, 1709, 1871, 1889, 1907
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

Or, primes of the form 18k - 1. Corresponding values of k are in A138918. - Zak Seidov, Apr 03 2008
From Doug Bell, Mar 23 2009: (Start)
Conjecture: if a(n) = 9x - 1, the integer formed by the repeating digits in the decimal fraction x/a(n) is the smallest integer such that rotating the digits to the left produces a number which is (x+1)/x times larger.
Example: x = 2, a(n) = 17: 2/17 = 0.1176470588235294... repeating with a cycle of 16.
1176470588235294 * 3/2 = 1764705882352941, which is 1176470588235294 rotated to the left.
An additional conjecture is that the values of x from this sequence are the only values where rotating an integer one to the left produces a value (x+1)/x times as large. (End)
The last conjecture is false. For example, for x = 3 we have 230769*(4/3) = 307692, but 9*3-1 = 26 is not in the sequence. - Giovanni Resta, Jul 28 2015
Conjecture: Primes p such that ((x+1)^9-1)/x has 4 irreducible factors of degree 2 over GF(p). - Federico Provvedi, Jun 27 2018

Crossrefs

Cf. A061237, A061238, A061239, A061240, A061241 (p mod 9 = 1, 2, 4, 5 and 7), A138918 (18n - 1 is prime), A258663 (9n - 1 is prime).
Can be partitioned in disjoint subsequences A062343 (primes with sum of digits s = 8), A106758 (s = 17), A106764 (s = 26), A106770 (s = 35), A106776 (s = 44), A106782 (s = 53), A107617 (s = 62), etc.

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 9*n - 1 ]; // Vincenzo Librandi, Jun 07 2015
    
  • Maple
    select(isprime, [seq(18*i-1,i=1..1000)]); # Robert Israel, Sep 03 2014
  • Mathematica
    Select[ Range[ 2500 ], PrimeQ[ # ] && Mod[ #, 9 ] == 8 & ]
    Select[9*Range[300] - 1, PrimeQ]
  • PARI
    select( {is(n)=n%9==8&&isprime(n)}, primes([1,2000])) \\ M. F. Hasler, Mar 10 2022
  • Python
    from sympy import prime
    A061242 = [p for p in (prime(n) for n in range(1,10**3)) if not (p+1) % 18]
    # Chai Wah Wu, Sep 02 2014
    

Formula

A010888(a(n)) = 8. - Reinhard Zumkeller, Feb 25 2005
a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001
Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Apr 30 2008
Edited by M. F. Hasler, Mar 10 2022

A258663 Numbers n such that 9n-1 is prime.

Original entry on oeis.org

2, 6, 8, 10, 12, 20, 22, 26, 28, 30, 40, 48, 50, 52, 56, 58, 62, 66, 72, 76, 78, 80, 86, 90, 92, 96, 98, 106, 108, 118, 122, 128, 132, 136, 140, 142, 152, 160, 166, 168, 176, 178, 180, 182, 190, 208, 210, 212, 220, 222, 230, 232, 238, 246, 252, 260
Offset: 1

Views

Author

Doug Bell, Jun 07 2015

Keywords

Comments

It is my conjecture that the integer formed by the repeating digits in the decimal fraction a(n)/(a(n)*9-1) is the smallest integer such that rotating the digits to the left produces a number which is ((a(n)+1)/a(n)) times larger.
Example: a(n) = 2: 2/17 = 0.1176470588235294... repeating with a cycle of 16.
1176470588235294 x (3/2) = 1764705882352941, which is 1176470588235294 rotated to the left.
An additional conjecture is that the values x in this sequence are the only values where rotating an integer one to the left produces a value (x+1)/x times as large. For example, the conjecture is that there are integers i that when rotated one to the left produce the value 3i/2, 7i/6 and 9i/8, but none that produce the value 2i/1, 4i/3, 5i/4, 6i/5 or 8i/7.
All of the terms in this sequence are even numbers that do not end with 4. (9n-1 is even for odd n and ends with 5 when the final digit of n = 4.) - Doug Bell, Jun 25 2015
The second conjecture is false. For example, 225806451612903*(8/7) = 258064516129032, or 45 * (6/5) = 54 or 230769*(4/3)=307692. - Giovanni Resta, Jul 28 2015

Crossrefs

Programs

Formula

a(n) = A138918(n)*2.
a(n) = (A061242(n)+1)/9.

Extensions

More terms from Vincenzo Librandi, Jun 07 2015

A290810 Numbers k such that 6k-1, 12k-1 and 18k-1 are all primes.

Original entry on oeis.org

1, 4, 5, 14, 15, 29, 39, 40, 49, 70, 110, 159, 169, 204, 235, 260, 264, 315, 334, 355, 390, 425, 449, 490, 560, 565, 599, 634, 725, 729, 735, 820, 824, 889, 1019, 1029, 1349, 1379, 1419, 1510, 1580, 1590, 1694, 1719, 1765, 1925, 1930, 1950, 1985, 2044, 2150
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

If k is in the sequence then (6k-1)(12k-1)(18k-1) = 36k * (36k^2 - 11k + 1) - 1 is a Lucas-Carmichael number (A006972).
Analogous to A046025 as A006972 (Lucas-Carmichael numbers) is analogous to A002997 (Carmichael numbers).

Examples

			1 is in the sequence since 6*1 - 1 = 5, 12*1 - 1 = 11 and 18*1 - 1 = 17 are all primes, and 5*11*17 = 935 is a Lucas-Carmichael number.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; Do[ If[ AllTrue[{6 m - 1, 12 m - 1, 18 m - 1}, PrimeQ ], AppendTo[seq, m] ], {m, 1, 10^5} ]; seq
  • PARI
    isok(n) = isprime(6*n-1) && isprime(12*n-1) && isprime(18*n-1); \\ Michel Marcus, Aug 11 2017

Formula

6*a(n) - 1 = A067256(n+1).

A098876 Least k such that 3*((6*n)^k) - 1 is prime.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2523, 2, 2, 1, 1, 2, 1, 1, 1, 2, 3, 6, 63, 1, 50, 38, 2, 1, 1, 1, 79, 1, 1, 3, 1, 4, 1, 2, 2, 1, 6, 1, 1, 1, 5, 3, 1, 18, 1, 1, 11, 1, 1, 26, 3, 10, 1, 1, 4, 2, 2, 4, 1, 6, 1, 4, 54, 1, 10, 1, 3, 1, 2, 1, 1
Offset: 1

Views

Author

Pierre CAMI, Oct 13 2004

Keywords

Comments

a(72) > 3830, and the sequence then continues: 6, 2, 7, 1, 27, 2, 3, 1, 7, 2, 1, 1, 4, 36, 346, 1, 1, 1, 1, 3, 6, 2, 1, 2, 444, ...
a(72) > 10^4. - Ray Chandler, Nov 13 2004

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ !PrimeQ[3*((6*n)^k) - 1], k++ ]; k]; Table[ f[n], {n, 71}] (* Robert G. Wilson v, Oct 21 2004 *)

Formula

a(A138918(n)) = 1. - Michel Marcus, Jul 28 2015

Extensions

Corrected and extended by Robert G. Wilson v, Oct 22 2004

A246965 Numbers n such that 19*n-(n+19) is a prime.

Original entry on oeis.org

2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 21, 25, 26, 27, 29, 30, 32, 34, 37, 39, 40, 41, 44, 46, 47, 49, 50, 54, 55, 60, 62, 65, 67, 69, 71, 72, 77, 81, 84, 85, 89, 90, 91, 92, 96, 105, 106, 107, 111, 112, 116, 117, 120, 124, 127, 131, 132, 134, 135, 137, 145, 146
Offset: 1

Views

Author

Shanmuga Subramanian, Sep 08 2014

Keywords

Examples

			17 = (19*2)-(19+2) is prime, so 2 is a term.
		

Programs

  • Mathematica
    Select[Range[150],PrimeQ[18#-19]&] (* Harvey P. Dale, Jun 10 2016 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (isprime(18*n-19), print1(n, ", ")););} \\ Michel Marcus, Sep 09 2014
    
  • PHP
    for($num=1;$num
    				
  • Sage
    [n for n in (2..200) if is_prime(18*n-19)] # Bruno Berselli, Sep 09 2014

Formula

a(n) = A138918(n)+1.
Showing 1-5 of 5 results.