A261762
Triangle read by rows: T(n,k) is the number of subpermutations of an n-set whose orbits are each of size at most k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 1, 10, 18, 1, 1, 46, 78, 108, 1, 1, 166, 486, 636, 780, 1, 1, 856, 3096, 4896, 5760, 6600, 1, 1, 3844, 21204, 40104, 52200, 58080, 63840, 1, 1, 21820, 167868, 363168, 508320, 602400, 648480, 693840, 1, 1, 114076, 1370268, 3490848, 5450400, 6720480
Offset: 0
T(3,2) = 10 because there are 10 subpermutations on {1,2,3}, each of whose orbit is of size at most 2, and without fixed points, namely: Empty map, (1,2) --> (2,1), (1,3) --> (3,1) (2,3) --> (3,2), 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2.
Triangle starts:
1;
1, 1;
1, 1, 4;
1, 1, 10, 18;
1, 1, 46, 78, 108;
1, 1, 166, 486, 636, 780;
...
-
A261762 := proc(n,k)
if k = 0 then
1;
else
if k < 1 then
g := 1;
elif k < 2 then
g := exp(x) ;
else
g := exp(x+add((j+1)*x^j/j,j=2..k)) ;
fi;
coeftayl(g,x=0,n) *n! ;
end if;
end proc:
seq(seq( A261762(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Nov 04 2015
-
T[n_, k_] := SeriesCoefficient[ Exp[ x + Sum[ (j+1)*x^j/j, {j, 2, k}]], {x, 0, n}] * n!; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 13 2017 *)
A261765
Triangle read by rows: T(n,k) is the number of subpermutations of an n-set, whose orbits are each of size at most k with at least one orbit of size exactly k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k with at least one orbit of size exactly k, and without fixed points.
Original entry on oeis.org
1, 1, 0, 1, 0, 3, 1, 0, 9, 8, 1, 0, 45, 32, 30, 1, 0, 165, 320, 150, 144, 1, 0, 855, 2240, 1800, 864, 840, 1, 0, 3843, 17360, 18900, 12096, 5880, 5760, 1, 0, 21819, 146048, 195300, 145152, 94080, 46080, 45360, 1, 0, 114075, 1256192, 2120580, 1959552, 1270080, 829440, 408240, 403200
Offset: 0
T(n,1) = 0 because there is no (partial) derangement with an orbit of size 1.
T(3,2) = 9 because there are 9 subpermutations on {1,2,3}, whose orbits are each of size at most 2 with at least one orbit of size exactly 2, and without fixed points, namely: (1 2 --> 2 1), (1 3 --> 3 1), (2 3 --> 3 2), (1-->2), (1-->3), (2-->1), (2-->3), (3-->1), (3-->2).
Triangle starts:
1;
1, 0;
1, 0, 3;
1, 0, 9, 8;
1, 0, 45, 32, 30;
1, 0, 165, 320, 150, 144;
1, 0, 855, 2240, 1800, 864, 840;
...
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
A144087
a(n) is the number of partial bijections (or subpermutations) of an n-element set with exactly 2 fixed points.
Original entry on oeis.org
0, 0, 1, 3, 24, 180, 1620, 16380, 184800, 2298240, 31222800, 459874800, 7296791040, 124047443520, 2248897210560, 43301275617600, 882304501478400, 18964350332928000, 428768570841811200, 10170992126597702400, 252555415474602240000, 6550785133563775104000, 177151172210521513804800
Offset: 0
a(3) = 3 because there are exactly 3 partial bijections (on a 3-element set) with exactly 2 fixed points, namely: (1,2)->(1,2), (1,3)->(1,3), (2,3)->(2,3) - the mappings are coordinate-wise.
A144088
T(n,k) is the number of partial bijections (or subpermutations) of an n-element set with exactly k fixed points.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 108, 72, 24, 4, 1, 780, 540, 180, 40, 5, 1, 6600, 4680, 1620, 360, 60, 6, 1, 63840, 46200, 16380, 3780, 630, 84, 7, 1, 693840, 510720, 184800, 43680, 7560, 1008, 112, 8, 1, 8361360, 6244560, 2298240, 554400, 98280, 13608, 1512, 144, 9, 1
Offset: 0
Triangle begins:
1;
1, 1;
4, 2, 1;
18, 12, 3, 1;
108, 72, 24, 4, 1;
780, 540, 180, 40, 5, 1;
6600, 4680, 1620, 360, 60, 6, 1;
63840, 46200, 16380, 3780, 630, 84, 7, 1;
...
T(3,1) = 12 because there are exactly 12 partial bijections (on a 3-element set) with exactly 1 fixed point, namely: (1)->(1), (2)->(2), (3)->(3), (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3), (1,2,3)->(1,3,2), (1,2,3)->(3,2,1), (1,2,3)->(2,1,3) -- the mappings are coordinate-wise.
-
max = 7; f[x_, k_] := (x^k/k!)*(Exp[x^2/(1-x)]/(1-x)); t[n_, k_] := n!*SeriesCoefficient[ Series[ f[x, k], {x, 0, max}], n]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]](* Jean-François Alcover, Mar 12 2012, from e.g.f. by Joerg Arndt *)
-
T(n) = {my(egf=exp(log(1/(1-x) + O(x*x^n)) - x + y*x + x/(1-x))); Vec([Vecrev(p) | p<-Vec(serlaplace(egf))])}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 29 2021
A144086
Number of partial bijections (or subpermutations) of an n-element set with exactly 1 fixed point.
Original entry on oeis.org
0, 1, 2, 12, 72, 540, 4680, 46200, 510720, 6244560, 83613600, 1216131840, 19084222080, 321271030080, 5773503415680, 110288062684800, 2231100039168000, 47640952315756800, 1070630750168179200, 25255541547460224000, 623884298434645248000, 16104652019138319436800
Offset: 0
a(3) = 12 because there are exactly 12 partial bijections (on a 3-element set) with exactly 1 fixed point, namely: (1)->(1), (2)->(2), (3)->(3), (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3), (1,2,3)->(1,3,2), (1,2,3)->(3,2,1), (1,2,3)->(2,1,3) - the mappings are coordinate-wise.
-
CoefficientList[Series[x*E^(x^2/(1-x))/(1-x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 24 2014 *)
-
x='x+O('x^66); /* that many terms */
k=1; egf=x^k/k!*exp(x^2/(1-x))/(1-x);
Vec(serlaplace(egf)) /* show terms, starting with 1 */
/* Joerg Arndt, Jul 11 2011 */
A144089
T(n,k) is the number of partial bijections (or subpermutations) of an n-element set of height k (height(alpha) = |Im(alpha)|) and without fixed points.
Original entry on oeis.org
1, 1, 0, 1, 2, 1, 1, 6, 9, 2, 1, 12, 42, 44, 9, 1, 20, 130, 320, 265, 44, 1, 30, 315, 1420, 2715, 1854, 265, 1, 42, 651, 4690, 16275, 25494, 14833, 1854, 1, 56, 1204, 12712, 70070, 198184, 263284, 133496, 14833, 1, 72, 2052, 29904, 240534, 1076544, 2573508
Offset: 0
T(3,2) = 9 because there are exactly 9 partial bijections (on a 3-element set) without fixed points and of height 2, namely: (1,2)->(2,1), (1,2)->(2,3), (1,2)->(3,1), (1,3)->(2,1), (1,3)->(3,1), (1,3)->(3,2), (2,3)->(1,2), (2,3)->(3,1), (2,3)->(3,2),- the mappings are coordinate-wise.
Triangle starts:
1;
1, 0;
1, 2, 1;
1, 6, 9, 2;
1, 12, 42, 44, 9;
1, 20, 130, 320, 265, 44;
-
t[n_, k_] := n!^2*Hypergeometric1F1[-k, -n, -1]/(k!*(n-k)!^2); Flatten[ Table[ t[n, k], {n, 0, 7}, {k, 0, n}]] (* Jean-François Alcover, Oct 13 2011 *)
CoefficientList[Table[x^n n! Sum[(-1)^k/k! LaguerreL[n - k, -1/x], {k, 0, n}], {n, 2, 10}], x] // Flatten (* Eric W. Weisstein, May 19 2017 *)
-
def A144089_triangle(dim): # computes rows in reversed order
M = matrix(ZZ,dim,dim)
for n in (0..dim-1): M[n,n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n,k] = M[n-1,k-1]+(2*k)*M[n-1,k]+(k+1)^2*M[n-1,k+1]
return M
A144089_triangle(9) # Peter Luschny, Sep 19 2012
A211709
T(n,k) = number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and every value unique in its row and column.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 18, 18, 1, 1, 108, 588, 108, 1, 1, 780, 30240, 30240, 780, 1, 1, 6600, 2277600, 17427192, 2277600, 6600, 1, 1, 63840, 234440280, 17741309400, 17741309400, 234440280, 63840, 1, 1, 693840, 31448589480
Offset: 1
Table starts:
1 1 1 1 1 1 1 1 1
1 4 18 108 780 6600 63840 693840
1 18 588 30240 2277600 234440280 31448589480
1 108 30240 17427192 17741309400
1 780 2277600 17741309400
1 6600 234440280
1 63840
1
Some solutions for n=4, k=4:
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 4 0 2 1 2 0 4 4 2 0 1 1 0 3 2 1 0 3 2
2 0 5 1 2 0 1 5 1 0 3 2 2 3 0 4 4 2 0 1
3 2 1 4 3 4 5 0 2 3 1 0 3 2 1 0 5 3 1 0
A369292
Array read by downward antidiagonals: A(n,k) = -A(n-1,k) + (k+1)*A(n-1,k+1) + A(n-1,k+2) with A(0,k) = 1, n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 8, 18, 1, 4, 14, 42, 108, 1, 5, 22, 84, 276, 780, 1, 6, 32, 150, 612, 2160, 6600, 1, 7, 44, 246, 1212, 5220, 19560, 63840, 1, 8, 58, 378, 2196, 11280, 50880, 200760, 693840, 1, 9, 74, 552, 3708, 22260, 118560, 556920, 2299920, 8361360
Offset: 0
Array begins:
=====================================================
n\k| 0 1 2 3 4 5 6 ...
---+-------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 2 3 4 5 6 7 ...
2 | 4 8 14 22 32 44 58 ...
3 | 18 42 84 150 246 378 552 ...
4 | 108 276 612 1212 2196 3708 5916 ...
5 | 780 2160 5220 11280 22260 40800 70380 ...
6 | 6600 19560 50880 118560 252120 496920 919200 ...
...
-
A(m,n=m)={my(r=vectorv(m+1), v=vector(n+2*m+1,k,1)); r[1] = v[1..n+1];
for(i=1, m, v=vector(#v-2, k, -v[k] + k*v[k+1] + v[k+2]); r[1+i] = v[1..n+1]); Mat(r)}
{ A(6) } \\ Andrew Howroyd, Jan 24 2024
Showing 1-8 of 8 results.
Comments