cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144128 Chebyshev U(n,x) polynomial evaluated at x=18.

Original entry on oeis.org

1, 36, 1295, 46584, 1675729, 60279660, 2168392031, 78001833456, 2805897612385, 100934312212404, 3630829342034159, 130608922001017320, 4698290362694589361, 169007844135004199676, 6079584098497456598975
Offset: 1

Views

Author

Keywords

Comments

From Bruno Berselli, Nov 21 2011: (Start)
A Diophantine property of these numbers: ((a(n+1)-a(n-1))/2)^2 - 323*a(n)^2 = 1.
More generally, for t(m) = m + sqrt(m^2-1) and u(n) = (t(m)^n - 1/t(m)^n)/(t(m) - 1/t(m)), we can verify that ((u(n+1) - u(n-1))/2)^2 - (m^2-1)*u(n)^2 = 1. (End)
a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,35}. - Milan Janjic, Jan 26 2015

Crossrefs

Cf. A200441, A200442, A200724 (incomplete list).
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), this sequence (m=18), A078987 (m=19), A097316 (m=33).

Programs

  • GAP
    a:=[1,36];; for n in [3..20] do a[n]:=36*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Feb 09 2018
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-323); S:=[((18+r)^n-1/(18+r)^n)/(2*r): n in [1..15]]; [Integers()!S[j]: j in [1..#S]]; // Bruno Berselli, Nov 21 2011
    
  • Magma
    I:=[1,36]; [n le 2 select I[n] else 36*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    seq( simplify(ChebyshevU(n, 18)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    LinearRecurrence[{36,-1},{1,36},20] (* Vincenzo Librandi, Nov 22 2011 *)
    GegenbauerC[Range[0,20],1,18] (* Harvey P. Dale, May 19 2019 *)
    ChebyshevU[Range[21] -1, 18] (* G. C. Greubel, Dec 22 2019 *)
  • Maxima
    makelist(sum((-1)^k*binomial(n-1-k,k)*36^(n-1-2*k),k,0,floor(n/2)),n,1,15); /* Bruno Berselli, Nov 21 2011 */
    
  • PARI
    Vec(x/(1-36*x+x^2)+O(x^16)) \\ Bruno Berselli, Nov 21 2011
    
  • PARI
    a(n) = polchebyshev(n, 2, 18); \\ Michel Marcus, Feb 09 2018
    
  • Sage
    [lucas_number1(n,36,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    

Formula

From Bruno Berselli, Nov 21 2011: (Start)
G.f.: x/(1-36*+x^2).
a(n) = 36*a(n-1) - a(n-2) with a(1)=1, a(2)=36.
a(n) = (t^n - 1/t^n)/(t - 1/t) for t = 18+sqrt(323).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-1-k, k)*36^(n-1-2*k). (End)
a(n) = Sum_{k=0..n} A101950(n,k)*35^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/17*(17 + sqrt(323)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/36*(17 + sqrt(323)). - Peter Bala, Dec 23 2012

Extensions

As Michel Marcus points out, some parts of this entry assume the offset is 1, others parts assume the offset is 0. The whole entry needs careful editing. - N. J. A. Sloane, Feb 10 2018