A144128 Chebyshev U(n,x) polynomial evaluated at x=18.
1, 36, 1295, 46584, 1675729, 60279660, 2168392031, 78001833456, 2805897612385, 100934312212404, 3630829342034159, 130608922001017320, 4698290362694589361, 169007844135004199676, 6079584098497456598975
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (36,-1).
Crossrefs
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), this sequence (m=18), A078987 (m=19), A097316 (m=33).
Programs
-
GAP
a:=[1,36];; for n in [3..20] do a[n]:=36*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Feb 09 2018
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-323); S:=[((18+r)^n-1/(18+r)^n)/(2*r): n in [1..15]]; [Integers()!S[j]: j in [1..#S]]; // Bruno Berselli, Nov 21 2011 -
Magma
I:=[1,36]; [n le 2 select I[n] else 36*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
-
Maple
seq( simplify(ChebyshevU(n, 18)), n=0..20); # G. C. Greubel, Dec 22 2019
-
Mathematica
LinearRecurrence[{36,-1},{1,36},20] (* Vincenzo Librandi, Nov 22 2011 *) GegenbauerC[Range[0,20],1,18] (* Harvey P. Dale, May 19 2019 *) ChebyshevU[Range[21] -1, 18] (* G. C. Greubel, Dec 22 2019 *)
-
Maxima
makelist(sum((-1)^k*binomial(n-1-k,k)*36^(n-1-2*k),k,0,floor(n/2)),n,1,15); /* Bruno Berselli, Nov 21 2011 */
-
PARI
Vec(x/(1-36*x+x^2)+O(x^16)) \\ Bruno Berselli, Nov 21 2011
-
PARI
a(n) = polchebyshev(n, 2, 18); \\ Michel Marcus, Feb 09 2018
-
Sage
[lucas_number1(n,36,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
Formula
From Bruno Berselli, Nov 21 2011: (Start)
G.f.: x/(1-36*+x^2).
a(n) = 36*a(n-1) - a(n-2) with a(1)=1, a(2)=36.
a(n) = (t^n - 1/t^n)/(t - 1/t) for t = 18+sqrt(323).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-1-k, k)*36^(n-1-2*k). (End)
a(n) = Sum_{k=0..n} A101950(n,k)*35^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/17*(17 + sqrt(323)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/36*(17 + sqrt(323)). - Peter Bala, Dec 23 2012
Extensions
As Michel Marcus points out, some parts of this entry assume the offset is 1, others parts assume the offset is 0. The whole entry needs careful editing. - N. J. A. Sloane, Feb 10 2018
Comments