A144390 a(n) = 3*n^2 - n - 1.
1, 9, 23, 43, 69, 101, 139, 183, 233, 289, 351, 419, 493, 573, 659, 751, 849, 953, 1063, 1179, 1301, 1429, 1563, 1703, 1849, 2001, 2159, 2323, 2493, 2669, 2851, 3039, 3233, 3433, 3639, 3851, 4069, 4293, 4523, 4759, 5001, 5249, 5503, 5763, 6029, 6301, 6579
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- John Elias, Illustration: Belted Hexagrams
- Leo Tavares, Illustration: Bounded Hexagons
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[3*n^2-n-1: n in [1..60]]; // Vincenzo Librandi, Jun 14 2011
-
Maple
A144390:=n->3*n^2-n-1; seq(A144390(n), n=1..50); # Wesley Ivan Hurt, Mar 26 2014
-
Mathematica
Table[3*n^2 -n -1 , {n,0,50}] (* G. C. Greubel, Jul 19 2017 *)
-
PARI
a(n)=3*n^2-n-1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n+1) = a(n) + 6*n + 2; see A016933.
G.f.: x*(1+6*x-x^2)/(1-x)^3. a(n) = A049450(n)-1. - R. J. Mathar, Oct 24 2008
a(-n) = A144391(n). - Michael Somos, Mar 27 2014
E.g.f.: (3*x^2 + 2*x -1)*exp(x) + 1. - G. C. Greubel, Jul 19 2017
From Leo Tavares, Dec 26 2021: (Start)
Extensions
Edited by R. J. Mathar, Oct 24 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008
Comments