cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A016777 a(n) = 3*n + 1.

Original entry on oeis.org

1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Numbers k such that the concatenation of the first k natural numbers is not divisible by 3. E.g., 16 is in the sequence because we have 123456789101111213141516 == 1 (mod 3).
Ignoring the first term, this sequence represents the number of bonds in a hydrocarbon: a(#of carbon atoms) = number of bonds. - Nathan Savir (thoobik(AT)yahoo.com), Jul 03 2003
n such that Sum_{k=0..n} (binomial(n+k,n-k) mod 2) is even (cf. A007306). - Benoit Cloitre, May 09 2004
Hilbert series for twisted cubic curve. - Paul Barry, Aug 11 2006
If Y is a 3-subset of an n-set X then, for n >= 3, a(n-3) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n) = A144390 (1, 9, 23, 43, 69, ...) - A045944 (0, 5, 16, 33, 56, ...). From successive spectra of hydrogen atom. - Paul Curtz, Oct 05 2008
Number of monomials in the n-th power of polynomial x^3+x^2+x+1. - Artur Jasinski, Oct 06 2008
A145389(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2008
Union of A035504, A165333 and A165336. - Reinhard Zumkeller, Sep 17 2009
Hankel transform of A076025. - Paul Barry, Sep 23 2009
From Jaroslav Krizek, May 28 2010: (Start)
a(n) = numbers k such that the antiharmonic mean of the first k positive integers is an integer.
A169609(a(n-1)) = 1. See A146535 and A169609. Complement of A007494.
See A005408 (odd positive integers) for corresponding values A146535(a(n)). (End)
Apart from the initial term, A180080 is a subsequence; cf. A180076. - Reinhard Zumkeller, Aug 14 2010
Also the maximum number of triangles that n + 2 noncoplanar points can determine in 3D space. - Carmine Suriano, Oct 08 2010
A089911(4*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
The number of partitions of 6*n into at most 2 parts. - Colin Barker, Mar 31 2015
For n >= 1, a(n)/2 is the proportion of oxygen for the stoichiometric combustion reaction of hydrocarbon CnH2n+2, e.g., one part propane (C3H8) requires 5 parts oxygen to complete its combustion. - Kival Ngaokrajang, Jul 21 2015
Exponents n > 0 for which 1 + x^2 + x^n is reducible. - Ron Knott, Oct 13 2016
Also the number of independent vertex sets in the n-cocktail party graph. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-ladder rung graph. - Eric W. Weisstein, Nov 29 2017
Also the number of maximal and maximum cliques in the n-book graph. - Eric W. Weisstein, Dec 01 2017
For n>=1, a(n) is the size of any snake-polyomino with n cells. - Christian Barrientos and Sarah Minion, Feb 27 2018
The sum of two distinct terms of this sequence is never a square. See Lagarias et al. p. 167. - Michel Marcus, May 20 2018
It seems that, for any n >= 1, there exists no positive integer z such that digit_sum(a(n)*z) = digit_sum(a(n)+z). - Max Lacoma, Sep 18 2019
For n > 2, a(n-2) is the number of distinct values of the magic constant in a normal magic triangle of order n (see formula 5 in Trotter). - Stefano Spezia, Feb 18 2021
Number of 3-permutations of n elements avoiding the patterns 132, 231, 312. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Erdős & Sárközy conjecture that a set of n positive integers with property P must have some element at least a(n-1) = 3n - 2. Property P states that, for x, y, and z in the set and z < x, y, z does not divide x+y. An example of such a set is {2n-1, 2n, ..., 3n-2}. Bedert proves this for large enough n. (This is an upper bound, and is exact for all known n; I have verified it for n up to 12.) - Charles R Greathouse IV, Feb 06 2023
a(n-1) = 3*n-2 is the dimension of the vector space of all n X n tridiagonal matrices, equals the number of nonzero coefficients: n + 2*(n-1) (see Wikipedia link). - Bernard Schott, Mar 03 2023

Examples

			G.f. = 1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + ... - _Michael Somos_, May 27 2019
		

References

  • W. Decker, C. Lossen, Computing in Algebraic Geometry, Springer, 2006, p. 22.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology, p. 264.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.

Crossrefs

Cf. A007559 (partial products), A051536 (lcm).
First differences of A000326.
Row sums of A131033.
Complement of A007494. - Reinhard Zumkeller, Oct 10 2008
Some subsequences: A002476 (primes), A291745 (nonprimes), A135556 (squares), A016779 (cubes).

Programs

  • Haskell
    a016777 = (+ 1) . (* 3)
    a016777_list = [1, 4 ..]  -- Reinhard Zumkeller, Feb 28 2013, Feb 10 2012
    
  • Magma
    [3*n+1 : n in [1..70]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Mathematica
    Range[1, 199, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
    (* Start from Eric W. Weisstein, Sep 21 2017 *)
    3 Range[0, 70] + 1
    Table[3 n + 1, {n, 0, 70}]
    LinearRecurrence[{2, -1}, {1, 4}, 70]
    CoefficientList[Series[(1 + 2 x)/(-1 + x)^2, {x, 0, 70}], x]
    (* End *)
  • Maxima
    A016777(n):=3*n+1$
    makelist(A016777(n),n,0,30); /* Martin Ettl, Oct 31 2012 */
    
  • PARI
    a(n)=3*n+1 \\ Charles R Greathouse IV, Jul 28 2015
    
  • SageMath
    [3*n+1 for n in range(1,71)] # G. C. Greubel, Mar 15 2024

Formula

G.f.: (1+2*x)/(1-x)^2.
a(n) = A016789(n) - 1.
a(n) = 3 + a(n-1).
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) + log(2)). [Jolley, p. 16, (79)] - Benoit Cloitre, Apr 05 2002
(1 + 4*x + 7*x^2 + 10*x^3 + ...) = (1 + 2*x + 3*x^2 + ...)/(1 - 2*x + 4*x^2 - 8*x^3 + ...). - Gary W. Adamson, Jul 03 2003
E.g.f.: exp(x)*(1+3*x). - Paul Barry, Jul 23 2003
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=4. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Nov 20 2010
Sum_{n>=0} 1/a(n)^2 = A214550. - R. J. Mathar, Jul 21 2012
a(n) = A238731(n+1,n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-5)^k. - Philippe Deléham, Mar 05 2014
Sum_{i=0..n} (a(i)-i) = A000290(n+1). - Ivan N. Ianakiev, Sep 24 2014
From Wolfdieter Lang, Mar 09 2018: (Start)
a(n) = denominator(Sum_{k=0..n-1} 1/(a(k)*a(k+1))), with the numerator n = A001477(n), where the sum is set to 0 for n = 0. [Jolley, p. 38, (208)]
G.f. for {n/(1 + 3*n)}_{n >= 0} is (1/3)*(1-hypergeom([1, 1], [4/3], -x/(1-x)))/(1-x). (End)
a(n) = -A016789(-1-n) for all n in Z. - Michael Somos, May 27 2019

Extensions

Better description from T. D. Noe, Aug 15 2002
Partially edited by Joerg Arndt, Mar 11 2010

A062786 Centered 10-gonal numbers.

Original entry on oeis.org

1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, 4961, 5281, 5611, 5951, 6301, 6661, 7031, 7411, 7801, 8201, 8611, 9031, 9461, 9901, 10351, 10811
Offset: 1

Views

Author

Jason Earls, Jul 19 2001

Keywords

Comments

Deleting the least significant digit yields the (n-1)-st triangular number: a(n) = 10*A000217(n-1) + 1. - Amarnath Murthy, Dec 11 2003
All divisors of a(n) are congruent to 1 or -1, modulo 10; that is, they end in the decimal digit 1 or 9. Proof: If p is an odd prime different from 5 then 5n^2 - 5n + 1 == 0 (mod p) implies 25(2n - 1)^2 == 5 (mod p), whence p == 1 or -1 (mod 10). - Nick Hobson, Nov 13 2006
Centered decagonal numbers. - Omar E. Pol, Oct 03 2011
The partial sums of this sequence give A004466. - Leo Tavares, Oct 04 2021
The continued fraction expansion of sqrt(5*a(n)) is [5n-3; {2, 2n-2, 2, 10n-6}]. For n=1, this collapses to [2; {4}]. - Magus K. Chu, Sep 12 2022
Numbers m such that 20*m + 5 is a square. Also values of the Fibonacci polynomial y^2 - x*y - x^2 for x = n and y = 3*n - 1. This is a subsequence of A089270. - Klaus Purath, Oct 30 2022
All terms can be written as a difference of two consecutive squares a(n) = A005891(n-1)^2 - A028895(n-1)^2, and they can be represented by the forms (x^2 + 2mxy + (m^2-1)y^2) and (3x^2 + (6m-2)xy + (3m^2-2m)y^2), both of discriminant 4. - Klaus Purath, Oct 17 2023

Crossrefs

Programs

  • GAP
    List([1..50], n-> 1+5*n*(n-1)); # G. C. Greubel, Mar 30 2019
    
  • Magma
    [1+5*n*(n-1): n in [1..50]]; // G. C. Greubel, Mar 30 2019
    
  • Mathematica
    FoldList[#1+#2 &, 1, 10Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
    1+5*Pochhammer[Range[50]-1, 2] (* G. C. Greubel, Mar 30 2019 *)
  • PARI
    j=[]; for(n=1,75,j=concat(j,(5*n*(n-1)+1))); j
    
  • PARI
    for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ Harry J. Smith, Aug 11 2009
    
  • Python
    def a(n): return(5*n**2-5*n+1) # Torlach Rush, May 10 2024
  • Sage
    [1+5*rising_factorial(n-1, 2) for n in (1..50)] # G. C. Greubel, Mar 30 2019
    

Formula

a(n) = 5*n*(n-1) + 1.
From Gary W. Adamson, Dec 29 2007: (Start)
Binomial transform of [1, 10, 10, 0, 0, 0, ...];
Narayana transform (A001263) of [1, 10, 0, 0, 0, ...]. (End)
G.f.: x*(1+8*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = A124080(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = A101321(10,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A028387(A016861(n-1))/5 for n > 0. - Art Baker, Mar 28 2019
E.g.f.: (1+5*x^2)*exp(x) - 1. - G. C. Greubel, Mar 30 2019
Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(5))) / sqrt(5). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 6*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 6/e - 1. (End)
a(n) = A005891(n-1) + 5*A000217(n-1). - Leo Tavares, Jul 14 2021
a(n) = A003154(n) - 2*A000217(n-1). See Mid-section Stars illustration. - Leo Tavares, Sep 06 2021
From Leo Tavares, Oct 06 2021: (Start)
a(n) = A144390(n-1) + 2*A028387(n-1). See Mid-section Star Pillars illustration.
a(n) = A000326(n) + A000217(n) + 3*A000217(n-1). See Trapezoidal Rays illustration.
a(n) = A060544(n) + A000217(n-1). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n) = A016754(n-1) + 2*A000217(n-1).
a(n) = A016754(n-1) + A002378(n-1).
a(n) = A069099(n) + 3*A000217(n-1).
a(n) = A069099(n) + A045943(n-1).
a(n) = A003215(n-1) + 4*A000217(n-1).
a(n) = A003215(n-1) + A046092(n-1).
a(n) = A001844(n-1) + 6*A000217(n-1).
a(n) = A001844(n-1) + A028896(n-1).
a(n) = A005448(n) + 7*A000217(n).
a(n) = A005448(n) + A024966(n). (End)
From Klaus Purath, Oct 30 2022: (Start)
a(n) = a(n-2) + 10*(2*n-3).
a(n) = 2*a(n-1) - a(n-2) + 10.
a(n) = A135705(n-1) + n.
a(n) = A190816(n) - n.
a(n) = 2*A005891(n-1) - 1. (End)

Extensions

Better description from Terrel Trotter, Jr., Apr 06 2002

A144391 a(n) = 3*n^2 + n - 1.

Original entry on oeis.org

3, 13, 29, 51, 79, 113, 153, 199, 251, 309, 373, 443, 519, 601, 689, 783, 883, 989, 1101, 1219, 1343, 1473, 1609, 1751, 1899, 2053, 2213, 2379, 2551, 2729, 2913, 3103, 3299, 3501, 3709, 3923, 4143, 4369, 4601, 4839, 5083, 5333, 5589, 5851, 6119, 6393, 6673
Offset: 1

Views

Author

Paul Curtz, Oct 02 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A135370(2*n).
First differences: a(n+1) - a(n) = A016957(n).
a(n) - A144390(n) = 6*n + 4 = A005843(n).
From R. J. Mathar, Oct 24 2008: (Start)
G.f.: x*(3 + 4*x - x^2)/(1 - x)^3.
a(n) = A049451(n) - 1. (End)
E.g.f.: (3*x^2 + 4*x - 1)*exp(x) + 1. - G. C. Greubel, Jul 19 2017
a(n) = 1 + Sum_{i = n-1..2*n-1} 2*i. - Bruno Berselli, Feb 16 2018
a(n) = A003215(n) - (n+1)*2. - Leo Tavares, Jul 04 2021

Extensions

Edited by R. J. Mathar, Oct 24 2008
More terms from Vladimir Joseph Stephan Orlovsky, Mar 01 2009

A156140 Accumulation of Stern's diatomic series: a(0)=-1, a(1)=0, and a(n+1) = (2e(n)+1)*a(n) - a(n-1) for n > 1, where e(n) is the highest power of 2 dividing n.

Original entry on oeis.org

-1, 0, 1, 3, 2, 7, 5, 8, 3, 13, 10, 17, 7, 18, 11, 15, 4, 21, 17, 30, 13, 35, 22, 31, 9, 32, 23, 37, 14, 33, 19, 24, 5, 31, 26, 47, 21, 58, 37, 53, 16, 59, 43, 70, 27, 65, 38, 49, 11, 50, 39, 67, 28, 73, 45, 62, 17, 57, 40, 63, 23, 52, 29, 35, 6, 43, 37, 68, 31, 87, 56, 81, 25, 94, 69
Offset: 0

Views

Author

Arie Werksma (Werksma(AT)Tiscali.nl), Feb 04 2009

Keywords

Crossrefs

From Yosu Yurramendi, Mar 09 2018: (Start)
a(2^m + 0) = A000027(m), m >= 0.
a(2^m + 1) = A002061(m+2), m >= 1.
a(2^m + 2) = A002522(m), m >= 2.
a(2^m + 3) = A033816(m-1), m >= 2.
a(2^m + 4) = A002061(m), m >= 2.
a(2^m + 5) = A141631(m), m >= 3.
a(2^m + 6) = A084849(m-1), m >= 3.
a(2^m + 7) = A056108(m-1), m >= 3.
a(2^m + 8) = A000290(m-1), m >= 3.
a(2^m + 9) = A185950(m-1), m >= 4.
a(2^m + 10) = A144390(m-1), m >= 4.
a(2^m + 12) = A014106(m-2), m >= 4.
a(2^m + 16) = A028387(m-3), m >= 4.
a(2^m + 18) = A250657(m-4), m >= 5.
a(2^m + 20) = A140677(m-3), m >= 5.
a(2^m + 32) = A028872(m-2), m >= 5.
a(2^m - 1) = A005563(m-1), m >= 0.
a(2^m - 2) = A028387(m-2), m >= 2.
a(2^m - 3) = A033537(m-2), m >= 2.
a(2^m - 4) = A008865(m-1), m >= 3.
a(2^m - 7) = A140678(m-3), m >= 3.
a(2^m - 8) = A014209(m-3), m >= 4.
a(2^m - 16) = A028875(m-2), m >= 5.
a(2^m - 32) = A108195(m-5), m >= 6.
(End)

Programs

  • Maple
    A156140 := proc(n)
        option remember ;
        if n <= 1 then
            n-1 ;
        else
            (2*A007814(n-1)+1)*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A156140(n),n=0..80) ; # R. J. Mathar, Mar 14 2009
  • Mathematica
    Fold[Append[#1, (2 IntegerExponent[#2, 2] + 1) #1[[-1]] - #1[[-2]] ] &, {-1, 0}, Range[73]] (* Michael De Vlieger, Mar 09 2018 *)
  • PARI
    first(n)=my(v=vector(n+1)); v[1]=-1; v[2]=0; for(k=1,n-1,v[k+2]=(2*valuation(k,2)+1)*v[k+1] - v[k]); v \\ Charles R Greathouse IV, Apr 05 2016
    
  • PARI
    fusc(n)=my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b
    a(n)=my(m=1,s,t); if(n==0, return(-1)); while(n%2==0, s+=fusc(n>>=1)); while(n>1, t=logint(n,2); n-=2^t; s+=m*fusc(n)*(t^2+t+1); m*=-t); m*(n-1) + s \\ Charles R Greathouse IV, Dec 13 2016
    
  • R
    a <- c(0,1)
    maxlevel <- 6 # by choice
    for(m in 1:maxlevel) {
      a[2^(m+1)] <- m + 1
      for(k in 1:(2^m-1)) {
        r <- m - floor(log2(k)) - 1
        a[2^r*(2*k+1)] <- a[2^r*(2*k)] + a[2^r*(2*k+2)]
    }}
    a
    # Yosu Yurramendi, May 08 2018

Formula

Let b(n) = A002487(n), Stern's diatomic series.
a(n+1)*b(n) - a(n)*b(n+1) = 1 for n >= 0.
a(2n+1) = a(n) + a(n+1) + b(n) + b(n+1) for n >= 0.
a(2n) = a(n) + b(n) for n >= 0.
a(2^n + k) = -n*a(k) + (n^2 + n + 1)*b(k) for 0 <= k <= 2^n.
b(2^n + k) = -a(k) + (n + 1)*b(k) for 0 <= k <= 2^n.
a(2^m + k) = b(2^m+k)*m + b(k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 09 2018
a(2^(m+1)+2^m+1) = 2*m+1, m >= 0. - Yosu Yurramendi, Mar 09 2018
From Yosu Yurramendi, May 08 2018: (Start)
a(2^m) = m, m >= 0.
a(2^r*(2*k+1)) = a(2^r*(2*k)) + a(2^r*(2*k+2)), r = m - floor(log_2(k)) - 1, m > 0, 1 <= k < 2^m.
(End)

A185877 Array T given by T(n,k) = k^2 +(2*n-3)*k -2*n +3, by antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 5, 1, 13, 11, 7, 1, 21, 19, 15, 9, 1, 31, 29, 25, 19, 11, 1, 43, 41, 37, 31, 23, 13, 1, 57, 55, 51, 45, 37, 27, 15, 1, 73, 71, 67, 61, 53, 43, 31, 17, 1, 91, 89, 85, 79, 71, 61, 49, 35, 19, 1, 111, 109, 105, 99, 91, 81, 69, 55, 39, 21, 1, 133, 131, 127, 121, 113, 103, 91, 77, 61, 43, 23, 1, 157, 155, 151, 145, 137, 127, 115, 101, 85, 67, 47, 25, 1, 183, 181, 177, 171, 163, 153, 141, 127, 111, 93, 73, 51, 27, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ... (See A144112 for the definition of accumulation array).

Examples

			Northwest corner:
  1, 3,  7, 13, 21
  1, 5, 11, 19, 29
  1, 7, 15, 25, 45
  1, 9, 19, 31, 45
		

Crossrefs

Row 1 to 3: A002061, A028387, A082111.
diag (1,5,...): A056108;
diag (3,11,...): A056106;
diag (7,19,...): A003215;
diag (13,29,...): A144391;
diag (1,7,...): A003215;
diag (1,9,...): A144390.

Programs

  • Mathematica
    (* This program generates A185877, its accumulation array A185878, and its weight array A185879. *)
    f[n_,0]:=0;f[0,k_]:=0;
    f[n_,k_]:=k^2+(2n-3)k-2n+3;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185877 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* formula for A185878 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0];
    TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* A185879 *)
    Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = k^2 + (2*n-3)*k - 2*n + 3, k>=1, n>=1.

A144404 Triangle T(n,k) = 3*binomial(n, k)^2 - binomial(n, k) - 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 23, 23, 1, 1, 43, 101, 43, 1, 1, 69, 289, 289, 69, 1, 1, 101, 659, 1179, 659, 101, 1, 1, 139, 1301, 3639, 3639, 1301, 139, 1, 1, 183, 2323, 9351, 14629, 9351, 2323, 183, 1, 1, 233, 3851, 21083, 47501, 47501, 21083, 3851, 233, 1, 1, 289, 6029, 43079, 132089, 190259, 132089, 43079, 6029, 289, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 03 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   9,    1;
  1,  23,   23,     1;
  1,  43,  101,    43,      1;
  1,  69,  289,   289,     69,      1;
  1, 101,  659,  1179,    659,    101,      1;
  1, 139, 1301,  3639,   3639,   1301,    139,     1;
  1, 183, 2323,  9351,  14629,   9351,   2323,   183,    1;
  1, 233, 3851, 21083,  47501,  47501,  21083,  3851,  233,   1;
  1, 289, 6029, 43079, 132089, 190259, 132089, 43079, 6029, 289, 1;
		

Crossrefs

Programs

  • Magma
    [3*Binomial(n, k)^2 -Binomial(n, k) -1: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 27 2021
    
  • Maple
    T:= (n,m) -> 3*Binomial(n,m)^2 - Binomial(n,m)-1:
    seq(seq(T(n,m),m=0..n),n=0..10); # Robert Israel, Jul 11 2016
  • Mathematica
    Table[3*Binomial[n,k]^2 -Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten
  • Sage
    flatten([[3*binomial(n, k)^2 -binomial(n, k) -1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 27 2021

Formula

From Robert Israel, Jul 11 2016: (Start)
T(n,m) = A144390(A007318(n,m)) = 3*A008459(n,m) - A007318(n,m).
Row sums: 3*binomial(2*n,n) - 2^n - n - 1.
G.f. as triangle: g(x,y) = 3/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2) - 1/(1-x-x*y)+1/((1-x)*(1-x*y)). (End)

Extensions

Offset changed by Robert Israel, Jul 11 2016

A214731 a(n) = n^3 - 2*n^2 - 1.

Original entry on oeis.org

-2, -1, 8, 31, 74, 143, 244, 383, 566, 799, 1088, 1439, 1858, 2351, 2924, 3583, 4334, 5183, 6136, 7199, 8378, 9679, 11108, 12671, 14374, 16223, 18224, 20383, 22706, 25199, 27868, 30719, 33758, 36991, 40424, 44063, 47914, 51983, 56276, 60799, 65558, 70559
Offset: 1

Views

Author

Marco Piazzalunga, Jul 27 2012

Keywords

Crossrefs

Cf. A080859, A085490, A144390 (first differences), A152619.
Similar sequences: A152015 (of the type m^3+2m^2-1), A081437 (m^3-2m^2+1).

Programs

Formula

From Bruno Berselli, Jul 27 2012: (Start)
G.f.: -x*(2-7*x-x^3)/(1-x)^4.
a(n) = A085490(n-1) + 2.
a(n) = A152619(n-2) - 1 for n>1.
a(n) - a(n-2) = A080859(n-2) - 1 for n>2. (End)
E.g.f.: 1 - (1-x)*(1+x)^2*exp(x). - G. C. Greubel, Dec 31 2023

Extensions

a(3) corrected by Charles R Greathouse IV, Jul 27 2012

A144478 Period 9: repeat 1,0,5,7,6,2,4,3,8.

Original entry on oeis.org

1, 0, 5, 7, 6, 2, 4, 3, 8, 1, 0, 5, 7, 6, 2, 4, 3, 8, 1, 0, 5, 7, 6, 2, 4, 3, 8, 1, 0, 5, 7, 6, 2, 4, 3, 8, 1, 0, 5, 7, 6, 2, 4, 3, 8, 1, 0, 5, 7, 6, 2, 4, 3, 8
Offset: 1

Views

Author

Paul Curtz, Oct 11 2008

Keywords

Comments

Essentially the same as A145577.

Programs

Formula

a(n) = A144390(n) mod 9.
a(9n+2)+a(9n+3)+a(9n+4) = a(9n+5)+a(9n+6)+a(9n+7) = a(9n+8)+a(9n+9)+a(9n+10) = 12.
a(n+4)-a(n+1) = period length 9 (repeat 6,-3,-3,-3,6,-3,-3,-3,6).

A193515 T(n,k) = number of ways to place any number of 3X1 tiles of k distinguishable colors into an nX1 grid.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 7, 7, 6, 1, 1, 6, 9, 10, 13, 9, 1, 1, 7, 11, 13, 22, 23, 13, 1, 1, 8, 13, 16, 33, 43, 37, 19, 1, 1, 9, 15, 19, 46, 69, 73, 63, 28, 1, 1, 10, 17, 22, 61, 101, 121, 139, 109, 41, 1, 1, 11, 19, 25, 78, 139, 181, 253, 268, 183, 60, 1, 1, 12
Offset: 1

Views

Author

R. H. Hardin, with proof and formula from Robert Israel in the Sequence Fans Mailing List, Jul 29 2011

Keywords

Comments

Table starts:
..1...1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..1...1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..2...3...4...5...6....7....8....9...10...11...12...13....14....15....16....17
..3...5...7...9..11...13...15...17...19...21...23...25....27....29....31....33
..4...7..10..13..16...19...22...25...28...31...34...37....40....43....46....49
..6..13..22..33..46...61...78...97..118..141..166..193...222...253...286...321
..9..23..43..69.101..139..183..233..289..351..419..493...573...659...751...849
.13..37..73.121.181..253..337..433..541..661..793..937..1093..1261..1441..1633
.19..63.139.253.411..619..883.1209.1603.2071.2619.3253..3979..4803..5731..6769
.28.109.268.529.916.1453.2164.3073.4204.5581.7228.9169.11428.14029.16996.20353

Examples

			Some solutions for n=7 k=3; colors=1,2,3 and empty=0
..3....0....0....2....0....1....3....0....0....0....1....0....3....1....0....0
..3....0....0....2....2....1....3....2....1....0....1....3....3....1....0....0
..3....1....0....2....2....1....3....2....1....2....1....3....3....1....0....3
..1....1....3....0....2....0....0....2....1....2....3....3....0....2....0....3
..1....1....3....0....0....2....2....2....1....2....3....2....1....2....1....3
..1....0....3....0....0....2....2....2....1....0....3....2....1....2....1....0
..0....0....0....0....0....2....2....2....1....0....0....2....1....0....1....0
		

Crossrefs

Column 1 is A000930,
Column 2 is A003229(n-1),
Column 3 is A084386,
Column 4 is A089977,
Column 10 is A178205,
Row 6 is A028872(n+2),
Row 7 is A144390(n+1),
Row 8 is A003154(n+1).

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n<0, 0,
          `if`(n<3 or k=0, 1, k*T(n-3, k) +T(n-1, k)))
        end:
    seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    nmax = 13; t[?Negative, ] = 0; t[n_, k_] /; (n < 3 || k == 0) = 1; t[n_, k_] := t[n, k] = k*t[n-3, k] + t[n-1, k]; Flatten[ Table[ t[n-k+1, k], {n , 1, nmax}, {k, n, 1, -1}]](* Jean-François Alcover, Nov 28 2011, after Maple *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1.
T(n,k) = sum {s=0..[n/3]} (binomial(n-2*s,s)*k^s).
For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011

A319128 Interleave n*(3*n - 2), 3*n^2 + n - 1, n=0,0,1,1, ... .

Original entry on oeis.org

0, -1, 1, 3, 8, 13, 21, 29, 40, 51, 65, 79, 96, 113, 133, 153, 176, 199, 225, 251, 280, 309, 341, 373, 408, 443, 481, 519, 560, 601, 645, 689, 736, 783, 833, 883, 936, 989, 1045, 1101, 1160, 1219, 1281, 1343, 1408, 1473, 1541, 1609, 1680, 1751
Offset: 0

Views

Author

Paul Curtz, Sep 11 2018

Keywords

Comments

A144391(n) = -1, 3, 13, 29, 51, ... is in the hexagonal spiral begining with -1 (like from 0 in A000567):
.
55--54--53--52--51
/ \
56 32--31--30--29 50
/ / \ \
57 33 15--14--13 28 49
/ / / \ \ \
58 34 16 4---3 12 27 48
/ / / / \ \ \ \
59 35 17 5 -1 2 11 26 47
/ / / / / / / /
36 18 6 0---1 10 25 46
\ \ \ / / /
37 19 7---8---9 24 45
\ \ / /
38 20--21--22--23 44
\ /
39--40--41--42--43
.
A000567(n) = 0, 1, 8, 21, 40, ... is in the first hexagonal spiral.
The bisections 0, 1, 8, 21, ... and -1, 3, 13, 29, ... are on the respective main antidiagonals.
a(-n) = 0, 1, 5, 9, 16, 23, ... . The bisections n*(3*n + 2) and 3*n^2 - n - 1 are in both spirals on main diagonals.
The bisections of a(n) are in the second spiral: ... 29, 13, 3, -1, 0, 1, 8, 21, ... .
The bisections of a(-n) are in the first and in the second spiral: ... 33, 16, 5, 0, 1, 9, 23, ... .

Crossrefs

Main diagonal of A318958.

Programs

  • GAP
    Flat(List([0..30],n->[3*n^2-2*n,3*n^2+n-1])); # Muniru A Asiru, Sep 19 2018
  • Maple
    seq(op([3*n^2-2*n,3*n^2+n-1]),n=0..30); # Muniru A Asiru, Sep 19 2018
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, -1, 1, 3 }, 40] (* Stefano Spezia, Sep 16 2018 *)
  • PARI
    concat(0, Vec(-x*(1 - 3*x - x^2) / ((1 - x)^3*(1 + x)) + O(x^40))) \\ Colin Barker, Sep 14 2018
    

Formula

a(n+1) = a(n) + (6*n^2 - 3*(-1)^n - 1)/4, n=0,1,2, ... , a(0) = 0.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>3.
From Colin Barker, Sep 14 2018: (Start)
G.f.: -x*(1 - 3*x - x^2) / ((1 - x)^3*(1 + x)).
a(n) = (-4*n + 3*n^2) / 4 for n even.
a(n) = (-3 - 4*n + 3*n^2) / 4 for n odd.
(End)
a(n) = (-3 + 3*(-1)^n - 8*n + 6*n^2)/8. - Colin Barker, Sep 14 2018
E.g.f.: (x*(3*x - 1)*cosh(x) + (3*x^2 - x - 3)*sinh(x))/4. - Stefano Spezia, Mar 15 2020
Showing 1-10 of 10 results.