cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A144390 a(n) = 3*n^2 - n - 1.

Original entry on oeis.org

1, 9, 23, 43, 69, 101, 139, 183, 233, 289, 351, 419, 493, 573, 659, 751, 849, 953, 1063, 1179, 1301, 1429, 1563, 1703, 1849, 2001, 2159, 2323, 2493, 2669, 2851, 3039, 3233, 3433, 3639, 3851, 4069, 4293, 4523, 4759, 5001, 5249, 5503, 5763, 6029, 6301, 6579
Offset: 1

Views

Author

Paul Curtz, Oct 02 2008

Keywords

Comments

Sequence's original Name was "First bisection of A135370."
The partial sums of this sequence give A081437. - Leo Tavares, Dec 26 2021

Crossrefs

Cf. A081437 (partial sums).

Programs

Formula

a(n+1) = a(n) + 6*n + 2; see A016933.
G.f.: x*(1+6*x-x^2)/(1-x)^3. a(n) = A049450(n)-1. - R. J. Mathar, Oct 24 2008
a(-n) = A144391(n). - Michael Somos, Mar 27 2014
E.g.f.: (3*x^2 + 2*x -1)*exp(x) + 1. - G. C. Greubel, Jul 19 2017
From Leo Tavares, Dec 26 2021: (Start)
a(n) = A003215(n) - 2*A005408(n). See Bounded Hexagons illustration.
a(n) = A016754(n-1) - A002378(n-2). (End)
a(n) = A003154(n) - A049451(n-1). - John Elias, Dec 22 2022

Extensions

Edited by R. J. Mathar, Oct 24 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008

A185877 Array T given by T(n,k) = k^2 +(2*n-3)*k -2*n +3, by antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 5, 1, 13, 11, 7, 1, 21, 19, 15, 9, 1, 31, 29, 25, 19, 11, 1, 43, 41, 37, 31, 23, 13, 1, 57, 55, 51, 45, 37, 27, 15, 1, 73, 71, 67, 61, 53, 43, 31, 17, 1, 91, 89, 85, 79, 71, 61, 49, 35, 19, 1, 111, 109, 105, 99, 91, 81, 69, 55, 39, 21, 1, 133, 131, 127, 121, 113, 103, 91, 77, 61, 43, 23, 1, 157, 155, 151, 145, 137, 127, 115, 101, 85, 67, 47, 25, 1, 183, 181, 177, 171, 163, 153, 141, 127, 111, 93, 73, 51, 27, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ... (See A144112 for the definition of accumulation array).

Examples

			Northwest corner:
  1, 3,  7, 13, 21
  1, 5, 11, 19, 29
  1, 7, 15, 25, 45
  1, 9, 19, 31, 45
		

Crossrefs

Row 1 to 3: A002061, A028387, A082111.
diag (1,5,...): A056108;
diag (3,11,...): A056106;
diag (7,19,...): A003215;
diag (13,29,...): A144391;
diag (1,7,...): A003215;
diag (1,9,...): A144390.

Programs

  • Mathematica
    (* This program generates A185877, its accumulation array A185878, and its weight array A185879. *)
    f[n_,0]:=0;f[0,k_]:=0;
    f[n_,k_]:=k^2+(2n-3)k-2n+3;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185877 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* formula for A185878 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0];
    TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* A185879 *)
    Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = k^2 + (2*n-3)*k - 2*n + 3, k>=1, n>=1.

A185880 Second accumulation array of A185877, by antidiagonals.

Original entry on oeis.org

1, 5, 3, 16, 17, 6, 40, 56, 38, 10, 85, 140, 128, 70, 15, 161, 295, 320, 240, 115, 21, 280, 553, 670, 600, 400, 175, 28, 456, 952, 1246, 1250, 1000, 616, 252, 36, 705, 1536, 2128, 2310, 2075, 1540, 896, 348, 45, 1045, 2355, 3408, 3920, 3815, 3185, 2240, 1248, 465, 55, 1496, 3465, 5190, 6240, 6440, 5831, 4620, 3120, 1680, 605, 66, 2080, 4928, 7590, 9450, 10200, 9800, 8428, 6420, 4200, 2200
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ... See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
   1,    5,   16,   40,   85
   3,   17,   56,  140,  295
   6,   38,  128,  320,  670
  10,   70,  240,  600, 1250
		

Crossrefs

Antidiagonal sums: A037235.
diag (1,5,...): A056108 (4th spoke on hexagonal wheel);
diag (3,11,...): A056106 (2nd spoke on hexagonal wheel);
diag (7,19,...): A003215 (hex numbers);
diag (13,29,...): A144391.

Programs

  • Mathematica
    (* This program generates A185878 first and then generates A185880 as the accumulation array of A185878. *)
    f[n_,k_]:=(k*n/6)(7-3k+2k^2-3n+3kn);
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185878 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}];
    FullSimplify[s[n,k]]
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185880 *)
    f[n_, k_] := (1/72)*k*(1 + k)*n*(1 + n)*(16 - k + 3 *k^2 + 4 *(-1 + k) *n); Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)

Formula

T(n,k) = C(k,2)*C(n,2)*(3*k^2+4*k*n-k-4*n+16)/18, k>=1, n>=1.

A157481 Number of primes between n^3-n^2 and (n+1)^3-(n+1)^2.

Original entry on oeis.org

0, 2, 5, 8, 10, 16, 21, 24, 32, 36, 43, 53, 57, 65, 74, 86, 92, 104, 114, 123, 133, 150, 151, 175, 180, 194, 207, 224, 238, 251, 271, 275, 306, 305, 332, 349, 359, 383, 408, 410, 434, 458, 473, 497, 502, 549, 553, 570, 590, 630, 641, 668, 685, 718, 726, 748, 780
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[(n+1)^3-(n+1)^2]-PrimePi[n^3-n^2],{n,0,5!}]

A274602 Triangle read by rows: T(n,k) = k*(n-k+1)^2 + n - k, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 5, 2, 3, 11, 9, 3, 4, 19, 20, 13, 4, 5, 29, 35, 29, 17, 5, 6, 41, 54, 51, 38, 21, 6, 7, 55, 77, 79, 67, 47, 25, 7, 8, 71, 104, 113, 104, 83, 56, 29, 8, 9, 89, 135, 153, 149, 129, 99, 65, 33, 9, 10, 109, 170, 199, 202, 185, 154, 115, 74, 37, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 01 2016

Keywords

Comments

Mirrored version of a(n) is T(n,k) = (n-k)*(k+1)^2+k, 0 <= k <= n, read by rows:
0
1 1
2 5 2
3 9 11 3
4 13 20 19 4
5 17 29 35 29 5
As an infinite square array (matrix) with comments:
0 1 2 3 4 5 A001477
1 5 11 19 29 41 A028387
2 9 20 35 54 77 A014107
3 13 29 51 79 113 A144391
4 17 38 67 104 149 A182868
5 21 47 83 129 185

Examples

			0; 1,1; 2,5,2; 3,11,9,3; 4,19,20,13,4; 5,29,35,29,17,5; ...
As an infinite triangular array:
0
1   1
2   5   2
3  11   9    3
4  19  20   13    4
5  29  35   29   17    5
As an infinite square array (matrix) with comments:
0   1   2    3    4    5                   A001477
1   5   9   13   17   21                   A016813
2  11  20   29   38   47                   A017185
3  19  35   51   67   83
4  29  54   79  104  129
5  41  77  113  149  185
		

Crossrefs

Cf. Triangle read by rows: T(n,k) = k*(n-k+1)^m+n-k, 0 <= k <= n: A003056 (m = 0), A059036 (m = 1), A278910 (m = k).

Programs

  • Magma
    /* As triangle */ [[k*(n-k+1)^2+n-k: k in [0..n]]: n in [0..10]];
  • Mathematica
    Table[k (n - k + 1)^(k + #) + n - k &[2 - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 02 2016 *)

A319128 Interleave n*(3*n - 2), 3*n^2 + n - 1, n=0,0,1,1, ... .

Original entry on oeis.org

0, -1, 1, 3, 8, 13, 21, 29, 40, 51, 65, 79, 96, 113, 133, 153, 176, 199, 225, 251, 280, 309, 341, 373, 408, 443, 481, 519, 560, 601, 645, 689, 736, 783, 833, 883, 936, 989, 1045, 1101, 1160, 1219, 1281, 1343, 1408, 1473, 1541, 1609, 1680, 1751
Offset: 0

Views

Author

Paul Curtz, Sep 11 2018

Keywords

Comments

A144391(n) = -1, 3, 13, 29, 51, ... is in the hexagonal spiral begining with -1 (like from 0 in A000567):
.
55--54--53--52--51
/ \
56 32--31--30--29 50
/ / \ \
57 33 15--14--13 28 49
/ / / \ \ \
58 34 16 4---3 12 27 48
/ / / / \ \ \ \
59 35 17 5 -1 2 11 26 47
/ / / / / / / /
36 18 6 0---1 10 25 46
\ \ \ / / /
37 19 7---8---9 24 45
\ \ / /
38 20--21--22--23 44
\ /
39--40--41--42--43
.
A000567(n) = 0, 1, 8, 21, 40, ... is in the first hexagonal spiral.
The bisections 0, 1, 8, 21, ... and -1, 3, 13, 29, ... are on the respective main antidiagonals.
a(-n) = 0, 1, 5, 9, 16, 23, ... . The bisections n*(3*n + 2) and 3*n^2 - n - 1 are in both spirals on main diagonals.
The bisections of a(n) are in the second spiral: ... 29, 13, 3, -1, 0, 1, 8, 21, ... .
The bisections of a(-n) are in the first and in the second spiral: ... 33, 16, 5, 0, 1, 9, 23, ... .

Crossrefs

Main diagonal of A318958.

Programs

  • GAP
    Flat(List([0..30],n->[3*n^2-2*n,3*n^2+n-1])); # Muniru A Asiru, Sep 19 2018
  • Maple
    seq(op([3*n^2-2*n,3*n^2+n-1]),n=0..30); # Muniru A Asiru, Sep 19 2018
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, -1, 1, 3 }, 40] (* Stefano Spezia, Sep 16 2018 *)
  • PARI
    concat(0, Vec(-x*(1 - 3*x - x^2) / ((1 - x)^3*(1 + x)) + O(x^40))) \\ Colin Barker, Sep 14 2018
    

Formula

a(n+1) = a(n) + (6*n^2 - 3*(-1)^n - 1)/4, n=0,1,2, ... , a(0) = 0.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>3.
From Colin Barker, Sep 14 2018: (Start)
G.f.: -x*(1 - 3*x - x^2) / ((1 - x)^3*(1 + x)).
a(n) = (-4*n + 3*n^2) / 4 for n even.
a(n) = (-3 - 4*n + 3*n^2) / 4 for n odd.
(End)
a(n) = (-3 + 3*(-1)^n - 8*n + 6*n^2)/8. - Colin Barker, Sep 14 2018
E.g.f.: (x*(3*x - 1)*cosh(x) + (3*x^2 - x - 3)*sinh(x))/4. - Stefano Spezia, Mar 15 2020

A370380 Array read by downward antidiagonals: A(n,k) = (k+2)*A(n-1,k+1) + Sum_{j=0..k} A(n-1,j) with A(0,k) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 3, 1, 5, 13, 1, 7, 29, 71, 1, 9, 51, 195, 461, 1, 11, 79, 409, 1493, 3447, 1, 13, 113, 737, 3623, 12823, 29093, 1, 15, 153, 1203, 7427, 35285, 122125, 273343, 1, 17, 199, 1831, 13601, 81009, 375591, 1277991, 2829325, 1, 19, 251, 2645, 22961, 164371, 954419, 4344485, 14584789, 31998903
Offset: 0

Views

Author

Mikhail Kurkov, Feb 17 2024

Keywords

Examples

			Array begins:
===========================================================
n\k|     0      1      2      3       4       5       6 ...
---+-------------------------------------------------------
0  |     1      1      1      1       1       1       1 ...
1  |     3      5      7      9      11      13      15 ...
2  |    13     29     51     79     113     153     199 ...
3  |    71    195    409    737    1203    1831    2645 ...
4  |   461   1493   3623   7427   13601   22961   36443 ...
5  |  3447  12823  35285  81009  164371  304667  526833 ...
6  | 29093 122125 375591 954419 2124937 4289433 8025755 ...
  ...
		

Crossrefs

Row 2 appears to be essentially A144391. - Joerg Arndt, Feb 17 2024
Cf. A003319.

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1];
    for(i=1, m, v=vector(#v-1, k, (k+1)*v[k+1] + sum(j=1, k, v[j])); r[1+i] = v[1..n+1]); Mat(r)}
    { A(6) }

Formula

Conjecture: A(n,0) = A003319(n+2). - Mikhail Kurkov, Oct 27 2024
A(n,k) = A(n,k-1) - k*A(n-1,k) + (k+2)*A(n-1,k+1) with A(n,0) = A(n-1,0) + 2*A(n-1,1), A(0,k) = 1. - Mikhail Kurkov, Nov 23 2024

A157482 Number of primes between n^3-n^2-n^1 and (n+1)^3-(n+1)^2-(n+1)^1.

Original entry on oeis.org

0, 1, 5, 8, 10, 16, 21, 24, 30, 39, 42, 52, 57, 65, 75, 86, 92, 102, 115, 122, 133, 150, 151, 176, 181, 192, 209, 221, 239, 252, 270, 273, 307, 308, 328, 350, 359, 383, 407, 414, 430, 460, 472, 494, 504, 548, 554, 571, 590, 629, 642, 669, 681, 722, 724, 749, 776
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[(n+1)^3-(n+1)^2-(n+1)^1]-PrimePi[n^3-n^2-n^1],{n,0,5!}]

A295089 a(n) = 3*n^2 + n + 3.

Original entry on oeis.org

3, 7, 17, 33, 55, 83, 117, 157, 203, 255, 313, 377, 447, 523, 605, 693, 787, 887, 993, 1105, 1223, 1347, 1477, 1613, 1755, 1903, 2057, 2217, 2383, 2555, 2733, 2917, 3107, 3303, 3505, 3713, 3927, 4147, 4373, 4605, 4843, 5087, 5337, 5593, 5855, 6123, 6397, 6677, 6963, 7255, 7553, 7857
Offset: 0

Views

Author

Ron Knott, Nov 14 2017

Keywords

Comments

Numbers represented as the palindrome 313 in number base n including base n=1, base 2 (binary) and base 3 with 'illegal' digit 3: 313_1=7, 313_2=17, 313_3=33, ... 313_9=255, 313_10=313, ...

Examples

			313 in base 7 is 3*7^2 + 1*7 + 3 = 157.
		

Crossrefs

Programs

  • Mathematica
    Array[3 #^2 + # + 3 &, 52, 0] (* Michael De Vlieger, Nov 15 2017 *)
    LinearRecurrence[{3, -3, 1}, {3, 7, 17}, 52] (* or *)
    CoefficientList[Series[-(5 x^2 - 2 x + 3)/(x - 1)^3, {x, 0, 51}], x] (* Robert G. Wilson v, Nov 29 2017 *)
  • PARI
    a(n) = 3*n^2 + n + 3; \\ Michel Marcus, Dec 15 2017

Formula

a(n) = A131649(n+3) + 1, n >= 2 (conjectured).
a(n) = A056108(n) + 2 = A049451(n) + 3 = A144391(n) + 4.
From Elmo R. Oliveira, Sep 02 2025: (Start)
G.f.: (3 - 2*x + 5*x^2)/(1-x)^3.
E.g.f.: (3 + 4*x + 3*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
Showing 1-9 of 9 results.