cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048785 a(0) = 0; a(n) = tau(n^3), where tau = number of divisors (A000005).

Original entry on oeis.org

0, 1, 4, 4, 7, 4, 16, 4, 10, 7, 16, 4, 28, 4, 16, 16, 13, 4, 28, 4, 28, 16, 16, 4, 40, 7, 16, 10, 28, 4, 64, 4, 16, 16, 16, 16, 49, 4, 16, 16, 40, 4, 64, 4, 28, 28, 16, 4, 52, 7, 28, 16, 28, 4, 40, 16, 40, 16, 16, 4, 112, 4, 16, 28, 19, 16, 64, 4, 28, 16
Offset: 0

Views

Author

Keywords

Comments

The inverse Mobius transform of A074816. - R. J. Mathar, Feb 09 2011
a(n) is also the number of ordered triples (i,j,k) of positive integers such that i|n, j|n, k|n and i,j,k are pairwise relatively prime. - Geoffrey Critzer, Jan 11 2015

Examples

			a(6) = 16 because there are 16 divisors of 6^3 = 216: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216.
Also there are 16 ordered triples of divisors of 6 that are pairwise relatively prime: (1,1,1), (1,1,2), (1,1,3), (1,1,6), (1,2,1), (1,2,3), (1,3,1), (1,3,2), (1,6,1), (2,1,1), (2,1,3), (2,3,1), (3,1,1), (3,1,2), (3,2,1), (6,1,1).
		

Crossrefs

Programs

  • Maple
    seq(numtheory:-tau(n^3), n=0..100); # Robert Israel, Jan 11 2015
  • Mathematica
    Join[{0,1},Table[Product[3 k + 1, {k, FactorInteger[n][[All, 2]]}], {n, 2, 69}]] (* Geoffrey Critzer, Jan 11 2015 *)
    Join[{0},DivisorSigma[0,Range[70]^3]] (* Harvey P. Dale, Jan 23 2016 *)
  • PARI
    A048785(n) = if(!n,n,numdiv(n^3)); \\ Antti Karttunen, May 19 2017
    
  • PARI
    print1("0, "); for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, May 15 2021
    print1("0, "); for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A048785(n): return 0 if n == 0 else prod(3*e+1 for e in factorint(n).values()) # Chai Wah Wu, May 10 2022
    
  • Python
    from sympy import divisor_count
    def A048785(n): return divisor_count(n**3) # Karl-Heinz Hofmann, May 10 2022

Formula

a(n) = Sum_{d|n} 3^omega(d), where omega(x) is the number of distinct prime factors in the factorization of x. - Benoit Cloitre, Apr 14 2002
Multiplicative with a(p^e) = 3e+1. - Mitch Harris, Jun 09 2005
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(3^omega(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 26 2018
For n>0, a(n) = Sum_{d|n} mu(d)^2*tau(d)*tau(n/d). - Ridouane Oudra, Nov 18 2019
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 2/p^s). - Vaclav Kotesovec, May 15 2021
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021

A126098 Where records occur in A018892.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 1680, 2520, 4620, 7560, 9240, 13860, 18480, 27720, 55440, 83160, 110880, 120120, 180180, 240240, 360360, 720720, 1081080, 1441440, 1801800, 2042040, 2882880, 3063060, 4084080, 5405400, 6126120, 12252240, 18378360, 24504480
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2007

Keywords

Comments

Remarkably similar to but ultimately different from A018894. - Jorg Brown and N. J. A. Sloane, Mar 06 2007
This sequence represents "where records occur" for a number of sequences in addition to A018892 including the following: A015995, A015996, A015999, A016001, A016002, A016003, A016005, A016006, A016007, A016008, A016009, A048691, A048785, A063647, A117677, A144943. - Ray Chandler, Dec 04 2008
Subsequence of A025487. - Ray Chandler, Sep 05 2008
Also record-setting elements of tau(n^2) (just as A002182 gives the record-setting elements of tau(n)). The point is that A018892 is (tau(n^2) + 1)/2. As tau(n^2) is odd, the record-setting elements of A018892 are also the record setting elements of tau(n^2). - Allen Tracht, Jan 20 2009

Crossrefs

Cf. A018892, A126097. Equals A117010(n) + 1.

Extensions

More terms from Jorg Brown (jorg(AT)google.com) and T. D. Noe, Mar 05 2007
a(27) corrected by hupo001(AT)gmail.com, Jan 10 2008
Showing 1-2 of 2 results.