cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A117010 a(n) = A126098(n) - 1.

Original entry on oeis.org

0, 1, 3, 5, 11, 23, 29, 59, 119, 179, 209, 359, 419, 839, 1259, 1679, 2519, 4619, 7559, 9239, 13859, 18479, 27719, 55439, 83159, 110879, 120119, 180179, 240239, 360359, 720719, 1081079, 1441439, 1801799, 2042039, 2882879, 3063059, 4084079, 5405399, 6126119
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

Crossrefs

Extensions

Definition revised by N. J. A. Sloane at the suggestion of Ray Chandler, Dec 05 2008

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A002182 Highly composite numbers: numbers n where d(n), the number of divisors of n (A000005), increases to a record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160
Offset: 1

Views

Author

Keywords

Comments

Where record values of d(n) occur: d(n) > d(k) for all k < n.
A002183 is the RECORDS transform of A000005, i.e., lists the corresponding values d(n) for n in A002182.
Flammenkamp's page also has a copy of the missing Siano paper.
Highly composite numbers are the product of primorials, A002110. See A112779 for the number of primorial terms in the product of a highly composite number. - Jud McCranie, Jun 12 2005
Sigma and tau for highly composite numbers through the 146th entry conform to a power fit as follows: log(sigma)=A*log(tau)^B where (A,B) =~ (1.45,1.38). - Bill McEachen, May 24 2006
a(n) often corresponds to P(n,m) = number of permutations of n things taken m at a time. Specifically, if start=1, pointers 1-6, 9, 10, 13-15, 17-19, 22, 23, 28, 34, 37, 43, 52, ... An example is a(37)=665280, which is P(12,6)=12!/(12-6)!. - Bill McEachen, Feb 09 2009
Concerning the previous comment, if m=1, then P(n,m) can represent any number. So let's assume m > 1. Searching the first 1000 terms, the only indices of terms of the form P(n,m) are 4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28, 31, 34, 37, 41, 43, 44, 47, 50, 52, and 54. Note that a(44) = 4324320 = P(2079,2). See A163264. - T. D. Noe, Jun 10 2009
A large number of highly composite numbers have 9 as their digit root. - Parthasarathy Nambi, Jun 07 2009
Because 9 divides all highly composite numbers greater than 1680, those numbers have digital root 9. - T. D. Noe, Jul 24 2009
See A181309 for highly composite numbers that are not highly abundant.
a(n) is also defined by the recurrence: a(1) = 1, a(n+1)/sigma(a(n+1)) < a(n) / sigma(a(n)). - Michel Lagneau, Jan 02 2012 [NOTE: This "definition" is wrong (a(20)=7560 does not satisfy this inequality) and incomplete: It does not determine a sequence uniquely, e.g., any subsequence would satisfy the same relation. The intended meaning is probably the definition of the (different) sequence A004394. - M. F. Hasler, Sep 13 2012]
Up to a(1000), the terms beyond a(5) = 12 resp. beyond a(9) = 60 are a multiples of these. Is this true for all subsequent terms? - M. F. Hasler, Sep 13 2012 [Yes: see EXAMPLE in A199337! - M. F. Hasler, Jan 03 2020]
Differs from the superabundant numbers from a(20)=7560 on, which is not in A004394. The latter is not a subsequence of A002182, as might appear from considering the displayed terms: The two sequences have only 449 terms in common, the largest of which is A002182(2567) = A004394(1023). See A166735 for superabundant numbers that are not highly composite, and A004394 for further information. - M. F. Hasler, Sep 13 2012
Subset of A067128 and of A025487. - David A. Corneth, May 16 2016, Jan 03 2020
It seems that a(n) +- 1 is often prime. For n <= 1000 there are 210 individual primes and 17 pairs of twin primes. See link to Lim's paper below. - Dmitry Kamenetsky, Mar 02 2019
There are infinitely many numbers in this sequence and a(n+1) <= 2*a(n), because it is sufficient to multiply a(n) by 2 to get a number having more divisors. (This proves Guess 0 in the Lim paper.) For n = (1, 2, 4, 5, 9, 13, 18, ...) one has equality in this bound, but asymptotically a(n+1)/a(n) goes to 1, cf. formula due to Erdős. See A068507 for the terms such that a(n)+-1 are twin primes. - M. F. Hasler, Jun 23 2019
Conjecture: For n > 7, a(n) is a Zumkeller number (A083207). Verified for n up to and including 48. If this conjecture is true, one may base on it an alternative proof of the fact that for n>7 a(n) is not a perfect square (see Fact 5, Rao/Peng arXiv link at A083207). - Ivan N. Ianakiev, Jun 29 2019
The conjecture above is true (see the proof in the "Links" section). - Ivan N. Ianakiev, Jan 31 2020
The first instance of omega(a(n)) < omega(a(n-1)) (omega = A001221: number of prime divisors) is at a(26) = 45360. Up to n = 10^4, 1759 terms have this property, but omega decreases by 2 only at indices n = 5857, 5914 and 5971. - M. F. Hasler, Jan 02 2020
Inequality (54) in Ramanujan (1915) implies that for any m there is n* such that m | a(n) for all n > n*: see A199337 for the proof. - M. F. Hasler, Jan 03 2020

Examples

			a(5) = 12 is in the sequence because A000005(12) is larger than any earlier value in A000005. - _M. F. Hasler_, Jan 03 2020
		

References

  • CRC Press Standard Mathematical Tables, 28th Ed, p. 61.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 180, p. 56, Ellipses, Paris 2008.
  • L. E. Dickson, History of Theory of Numbers, I, p. 323.
  • Ross Honsberger, An introduction to Ramanujan's Highly Composite Numbers, Chap. 14 pp. 193-200 Mathematical Gems III, DME no. 9 MAA 1985
  • Jean-Louis Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 88.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Cf. A261100 (a left inverse).
Cf. A002808. - Peter J. Marko, Aug 16 2018
Cf. A279930 (highly composite and highly Brazilian).
Cf. A068507 (terms such that a(n)+-1 are twin primes).
Cf. A199337 (number of terms not divisible by n).

Programs

  • Mathematica
    a = 0; Do[b = DivisorSigma[0, n]; If[b > a, a = b; Print[n]], {n, 1, 10^7}]
    (* Convert A. Flammenkamp's 779674-term dataset; first, decompress, rename "HCN.txt": *)
    a = Times @@ {Times @@ Prime@ Range@ ToExpression@ First@ #1, If[# == {}, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, #]] &@ DeleteCases[-1 + Flatten@ Map[If[StringFreeQ[#, "^"], ToExpression@ #, ConstantArray[#1, #2] & @@ ToExpression@ StringSplit[#, "^"]] &, #2], 0]} & @@ TakeDrop[StringSplit@ #, 1] & /@ Import["HCN.txt", "Data"] (* Michael De Vlieger, May 08 2018 *)
    DeleteDuplicates[Table[{n,DivisorSigma[0,n]},{n,2163000}],GreaterEqual[ #1[[2]],#2[[2]]]&] [[All,1]] (* Harvey P. Dale, May 13 2022 *)
    NestList[Function[last,
      Module[{d = DivisorSigma[0, last]},
       NestWhile[# + 1 &, last, DivisorSigma[0, #] <= d &]]], 1, 40] (* Steven Lu, Mar 30 2023 *)
  • PARI
    print1(r=1); forstep(n=2,1e5,2, if(numdiv(n)>r, r=numdiv(n); print1(", "n))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    v002182 = [1]/*vector for memoization*/; A002182(n, i = #v002182) ={ if(n > i, v002182 = Vec(v002182, n); my(k = v002182[i], d, s=1); until(i == n, d = numdiv(k); s<60 && k>=60 && s=60; until(numdiv(k += s) > d,); v002182[i++] = k); k, v002182[n])} \\ Antti Karttunen, Jun 06 2017; edited by M. F. Hasler, Jan 03 2020 and Jun 20 2022
    
  • PARI
    is_A002182(n, a=1, b=1)={while(n>A002182(b*=2), a*=2); until(a>b, my(m=(a+b)\2, t=A002182(m)); if(tn, b=m-1, return(m)))} \\ Also used in other sequences. - M. F. Hasler, Jun 20 2022
    
  • Python
    from sympy import divisor_count
    A002182_list, r = [], 0
    for i in range(1,10**4):
        d = divisor_count(i)
        if d > r:
            r = d
            A002182_list.append(i) # Chai Wah Wu, Mar 23 2015

Formula

Also, for n >= 2, smallest values of p for which A006218(p)-A006318(p-1) = A002183(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n+1) < a(n) * (1+log(a(n))^-c) for some positive c (see Erdős). - David A. Corneth, May 16 2016
a(n) = A108951(A329902(n)). - Antti Karttunen, Jan 08 2020
a(n+1) <= 2*a(n). For cases where the equal sign holds, see A072938. - A.H.M. Smeets, Jul 10 2021
Sum_{n>=1} 1/a(n) = A352418. - Amiram Eldar, Mar 24 2022

Extensions

Jun 19 1996: Changed beginning to start at 1.
Jul 10 1996: Matthew Conroy points out that these are different from the super-abundant numbers - see A004394. Last 8 terms sent by J. Lowell; checked by Jud McCranie.
Description corrected by Gerard Schildberger and N. J. A. Sloane, Apr 04 2001
Additional references from Lekraj Beedassy, Jul 24 2001

A018892 Number of ways to write 1/n as a sum of exactly 2 unit fractions.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 14, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 14, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 23, 2, 5, 8, 7, 5, 14, 2, 8, 5, 14, 2, 18, 2, 5, 8, 8, 5, 14, 2, 14, 5, 5, 2, 23, 5, 5, 5, 11, 2, 23, 5, 8, 5, 5, 5, 17, 2, 8, 8
Offset: 1

Views

Author

Keywords

Comments

Number of elements in the set {(x,y): x|n, y|n, x<=y, gcd(x,y)=1}. Number of divisors of n^2 less than or equal to n. - Vladeta Jovovic, May 03 2002
Equivalently, number of pairs (x,y) such that lcm(x,y)=n. - Benoit Cloitre, May 16 2002
Also, number of right triangles with an integer hypotenuse and height n. - Reinhard Zumkeller, Jul 10 2002
The triangles are to be considered as resting on their hypotenuse, with the height measured to the right angle. - Franklin T. Adams-Watters, Feb 19 2015
a(n) >= 2 for n>=2 because of the identities 1/n = 1/(2*n) + 1/(2*n) = 1/(n+1) + 1/(n*(n+1)). - Lekraj Beedassy, May 04 2004
a(n) is the number of divisors of n^2 that are <= n; e.g., a(12) counts these 8 divisors of 12: 1,2,3,4,6,8,9,12. - Clark Kimberling, Apr 21 2019

Examples

			n=1: 1/1 = 1/2 + 1/2.
n=2: 1/2 = 1/4 + 1/4 = 1/3 + 1/6.
n=3: 1/3 = 1/6 + 1/6 = 1/4 + 1/12.
		

References

  • K. S. Brown, Posting to netnews group sci.math, Aug 17 1996.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2 p. 690, Chelsea NY 1923.
  • A. M. and I. M. Yaglom, Challenging Mathematical Problems With Elementary Solutions, Vol. 1, Dover, N.Y., 1987, pp. 8 and 60, Problem 19.

Crossrefs

Programs

  • Haskell
    a018892 n = length [d | d <- [1..n], n^2 `mod` d == 0]
    -- Reinhard Zumkeller, Jan 08 2012
    
  • Mathematica
    f[j_, n_] := (Times @@ (j(Last /@ FactorInteger[n]) + 1) + j - 1)/j; Table[f[2, n], {n, 96}] (* Robert G. Wilson v, Aug 03 2005 *)
    a[n_] := (DivisorSigma[0, n^2] + 1)/2; Table[a[n], {n, 1, 99}](* Jean-François Alcover, Dec 19 2011, after Vladeta Jovovic *)
  • PARI
    A018892(n)=(numdiv(n^2)+1)/2 \\ M. F. Hasler, Dec 30 2007
    
  • PARI
    A018892s(n)=local(t=divisors(n^2));vector((#t+1)/2,i,[n+t[i],n+n^2/t[i]]) /* show solutions */ \\ M. F. Hasler, Dec 30 2007
    
  • PARI
    a(n)=sumdiv(n,d,sum(i=1,d,lcm(d,i)==n)) \\ Charles R Greathouse IV, Apr 08 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A018892(n): return prod((a<<1)+1 for a in factorint(n).values())+1>>1 # Chai Wah Wu, Aug 20 2023

Formula

If n = (p1^a1)(p2^a2)...(pt^at), a(n) = ((2*a1 + 1)(2*a2 + 1) ... (2*at + 1) + 1)/2.
a(n) = (tau(n^2)+1)/2. - Vladeta Jovovic, May 03 2002
a(n) = A063647(n)+1 = A046079(2*n)+1. - Lekraj Beedassy, Dec 01 2003
a(n) = Sum_{d|n} phi(2^omega(d)), where phi is A000010 and omega is A001221. - Enrique Pérez Herrero, Apr 13 2012
a(n) = A000005(n) + A089233(n). - James Spahlinger, Feb 16 2016
a(n) = n + Sum_{i=1..n} sign(n^2 mod -i). - Wesley Ivan Hurt, Apr 07 2021
a(n) = Sum_{d|n} mu(n/d)*A184389(d). - Ridouane Oudra, Feb 22 2022
Sum_{k=1..n} a(k) ~ (n/(2*zeta(2)))*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 + zeta(2) + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Oct 03 2024

Extensions

More terms from David W. Wilson, Sep 15 1996
First example corrected by Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 02 2009
Incorrect Mathematica program deleted by N. J. A. Sloane, Jul 08 2009

A018894 Numbers k such that sigma(k)/phi(k) sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 1680, 2520, 4620, 9240, 13860, 18480, 27720, 55440, 110880, 120120, 180180, 240240, 360360, 720720, 1441440, 2162160, 3603600, 4084080, 4324320, 6126120, 12252240, 24504480, 36756720, 61261200
Offset: 1

Views

Author

Keywords

Comments

Remarkably similar to but ultimately different from A126098. - Jorg Brown and N. J. A. Sloane, Mar 06 2007
Is a(n+1) <= 2*a(n)? Is a(n) divisible by the primorial p# where p is the largest prime divisor of a(n)? Is a(k) divisible by p# for all k > n + 1? (Cf. A002110.) - David A. Corneth, May 22 2016
From Jud McCranie, Nov 28 2017: (Start)
Yes, a(n+1) <= 2*a(n) -- if m is odd, phi(2*m) = phi(m) and sigma(2*m) = 3*sigma(m).
If m is even then phi(2*m) = 2*phi(m) and sigma(2*m) > 2*sigma(m).
So sigma(2*m)/phi(2*m) > sigma(m)/phi(m). (End)
From David A. Corneth, Sep 10 2020: (Start)
Subsequence of A025487.
Let prime(n)# be the product of the first n primes. Then the LCM of the terms <= 10^40 is 89# * 7# * 5# * (3#)^2 * (2#)^4.
We can assume a larger LCM for terms <= 10^60 namely P# * (13#)^3 * (11#) * (5#) * (3#)^2 * (2#)^4. This gives a total of 466 terms <= 10^75 where P is an arbitrary large prime such that P# <= 10^75.
The LCM of these found terms is a proper divisor and for all primes p <= 13 the exponent is less than the assumed prime. Conjecture: These 466 terms are the terms <= 10^75.
For all 240 terms 1 < t <= 10^40 the following holds: there exists a p|t such that t/p is a term. Conjecture: This holds for all terms t > 1.
Using this technique to find terms I get 6522 terms <= 10^1000 and no conflict with terms found above.
See attached file with terms assuming these conjectures. (End)

Crossrefs

Programs

  • Mathematica
    Flatten@ Function[k, FirstPosition[k, #] & /@ Union@ Rest@ FoldList[Max, 0, k]]@ Array[DivisorSigma[1, #]/EulerPhi@ # &, 10^7] (* Michael De Vlieger, May 27 2016, Version 10 *)
  • PARI
    lista(nn) = {mse = 0; for (n=1, nn, se = sigma(n)/eulerphi(n); if (se > mse, print1(n, ", "); mse = se););} \\ Michel Marcus, Jul 10 2015

Extensions

More terms from Jud McCranie, Nov 09 2001
Initial term added by Arkadiusz Wesolowski, Sep 06 2012

A136404 Square numbers with more divisors than any smaller square number.

Original entry on oeis.org

1, 4, 16, 36, 144, 576, 900, 3600, 14400, 32400, 44100, 129600, 176400, 705600, 1587600, 2822400, 6350400, 21344400, 57153600, 85377600, 192099600, 341510400, 768398400, 3073593600, 6915585600, 12294374400, 14428814400, 32464832400, 57715257600, 129859329600
Offset: 1

Views

Author

J. Lowell, Mar 30 2008

Keywords

Comments

Being the square of a number in A002182 is neither necessary nor sufficient.
Conjecture: square roots of the terms of this sequence are the same terms as A126098.
These are the squares of the indices of the RECORDS of A048691. - R. J. Mathar, Apr 04 2008
The square roots of terms are in A025487. - David A. Corneth, Oct 17 2018
From David A. Corneth, Oct 18 2018: (Start)
Records for largest exponents occur at: 1, 2, 5, 15, 25, 35, 200, 203
Least k such that a(k) divides prime(i)^4: 5, 10, 34, 104, 302
Based on these exponents I made the following dataset:
primorials <= 10^200 (92 such numbers).
Then made products of primorials <= 10^200 where the exponent of prime(11) is at most 2. Then searched records here. The b-file is checking A025487 squared checked. (End)

Examples

			900 qualifies because 576 has only 21 divisors and 900 has 27. 1296 does not because 1296 has only 25 divisors as opposed to the 27 of the smaller 900.
		

Crossrefs

Programs

  • Maple
    a := 0 : for n from 1 to 1000000 do ndvs := numtheory[tau](n^2) ; if ndvs > a then printf("%d,",n^2) ; a := ndvs ; fi ; od: # R. J. Mathar, Apr 04 2008
    with(numtheory): a:=proc(n) if max(seq(tau(j^2),j=1..n-1))Emeric Deutsch, Apr 04 2008
  • Mathematica
    With[{s = Array[DivisorSigma[0, #^2] &, 10^6]}, Map[FirstPosition[s, #][[1]]^2 &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Oct 15 2018 *)

Extensions

More terms from R. J. Mathar and Donovan Johnson, Apr 04 2008

A117679 Records in A117677.

Original entry on oeis.org

0, 1, 3, 7, 13, 19, 25, 43, 61, 73, 79, 103, 133, 187, 223, 241, 313, 403, 439, 565, 673, 727, 943, 1213, 1321, 1483, 1699, 2023, 2185, 2833, 3643, 3967, 4453, 4723, 5101, 5263, 6073, 6559, 6613, 8503, 10933, 11905, 13363, 14173, 15307, 15793, 18223
Offset: 1

Views

Author

Mark Taggart (mt2612f(AT)aol.com), Apr 12 2006

Keywords

Crossrefs

Formula

a(n) = Max[0,A000005(A126098(n)^2)-2]. - Ray Chandler, Dec 04 2008

Extensions

Extended by Ray Chandler, Dec 04 2008

A126097 Records in A018892.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 14, 23, 32, 38, 41, 53, 68, 95, 113, 122, 158, 203, 221, 284, 338, 365, 473, 608, 662, 743, 851, 1013, 1094, 1418, 1823, 1985, 2228, 2363, 2552, 2633, 3038, 3281, 3308, 4253, 5468, 5954, 6683, 7088, 7655, 7898, 9113, 9356, 9842, 9923, 12758
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2007

Keywords

Crossrefs

Extensions

More terms from Jorg Brown (jorg(AT)google.com) and T. D. Noe, Mar 05 2007
Extended by Ray Chandler, Sep 05 2008

A282472 Numbers k where records occur for d(k^2)/d(k), where d(k) is A000005(k).

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 420, 840, 1260, 2310, 4620, 9240, 13860, 27720, 30030, 60060, 120120, 180180, 360360, 510510, 1021020, 2042040, 3063060, 6126120, 9699690, 19399380, 38798760, 58198140, 116396280, 223092870, 446185740, 892371480
Offset: 1

Views

Author

Daniel Suteu, Feb 18 2017

Keywords

Comments

First 14 terms are similar, with A168264.
The quotients are (1, 3/2, 5/3, 9/4, 5/2, 21/8, 27/8, 15/4, 63/16, 25/6, 81/16, 45/8, 189/32, 25/4, 243/32, 135/16, 567/64, 75/8, 315/32, 729/64, 405/32, 1701/128, 225/16, 945/64, 2187/128, 1215/64, 5103/256, 675/32, 2835/128, 6561/256, 3645/128, 15309/512, 2025/64, 8505/256, 19683/512,...). - Lars Blomberg, Apr 10 2017

Crossrefs

Programs

  • Maple
    A282472 := proc(n)
        option remember;
        local a,a1,rec ;
        if n = 1 then
            1;
        else
            a1 := procname(n-1) ;
            rec := numtheory[tau](a1^2)/numtheory[tau](a1) ;
            for a from a1+1 do
                if numtheory[tau](a^2)/numtheory[tau](a) > rec then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Mar 03 2017
  • Mathematica
    s={}; rm=0; Do[r=DivisorSigma[0, n^2]/DivisorSigma[0, n]; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^4}]; s (* Amiram Eldar, Jul 17 2019 *)
  • PARI
    lista(nn) = {rec = 0; for (n=1, nn, if ((newrec = numdiv(n^2)/numdiv(n)) > rec, rec = newrec; print1(n, ", ")););} \\ Michel Marcus, Feb 20 2017
  • Perl
    use ntheory qw(:all);
    for (my ($n, $m) = (1, 0) ; ; ++$n) {
        my $d = divisors($n*$n) / divisors($n);
        if ($m < $d) {
            $m = $d;
            print "$n\n";
        }
    }
    

Extensions

a(32)-a(35) from Lars Blomberg, Apr 10 2017
a(36)-a(37) from Giovanni Resta, Apr 10 2017

A176471 Duplicate of A136404.

Original entry on oeis.org

1, 4, 16, 36, 144, 576, 900, 3600, 14400, 32400, 44100, 129600, 176400, 705600, 1587600, 2822400, 6350400, 21344400, 57153600, 85377600, 192099600, 341510400, 768398400, 3073593600, 6915585600, 12294374400, 14428814400, 32464832400, 57715257600, 129859329600
Offset: 1

Views

Author

Ethan Ward (etkewa(AT)gmail.com), Apr 18 2010

Keywords

Comments

Same as A136404. - Georg Fischer, Oct 12 2018
Previous name was: Highly composite square numbers for which the number of divisors increases to a record.

Crossrefs

Cf. A126098 (square root of these terms).
Cf. A136404. - Georg Fischer, Oct 12 2018

Programs

  • Mathematica
    With[{sqs=Range[10000]^2},Union[Flatten[Table[Select[sqs, DivisorSigma[ 0,#]>n&,1],{n,500}]]]] (* Harvey P. Dale, Apr 28 2012 *)
    t = {1}; sig = {1}; n = 1; Do[While[n++; d = DivisorSigma[0, n^2]; d <= sig[[-1]]]; AppendTo[sig, d]; AppendTo[t, n^2], {30}]; t (* T. D. Noe, Apr 30 2012 *)

Extensions

Corrected and extended by Harvey P. Dale, Apr 28 2012
Showing 1-10 of 12 results. Next