cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A145449 Numbers n such that A145445(n) = A145446(n).

Original entry on oeis.org

16, 17, 18, 123, 124, 125, 126, 127, 128, 129, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 1797, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812, 1813, 1814, 1815, 1816, 1817, 1818
Offset: 1

Views

Author

Zak Seidov, Oct 10 2008

Keywords

Comments

Numbers n such that s(n), the smallest square > n-th prime, equals q(n), the smallest cube > n-th prime, s(n) = A145445(n), q(n) = A145446(n).

Crossrefs

Programs

  • Mathematica
    Do[If[Ceiling[Prime[n]^(1/3)]^3 == Ceiling[Prime[n]^(1/2)]^2,Print[n]],{n,10000}]

A014085 Number of primes between n^2 and (n+1)^2.

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8, 7, 8, 9, 8, 8, 10, 9, 10, 9, 10, 9, 9, 12, 11, 12, 11, 9, 12, 11, 13, 10, 13, 15, 10, 11, 15, 16, 12, 13, 11, 12, 17, 13, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 21, 15, 15, 17, 17, 18, 22, 14, 18, 23, 13
Offset: 0

Views

Author

Jon Wild, Jul 14 1997

Keywords

Comments

Suggested by Legendre's conjecture (still open) that for n > 0 there is always a prime between n^2 and (n+1)^2.
a(n) is the number of occurrences of n in A000006. - Philippe Deléham, Dec 17 2003
See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
Legendre's conjecture may be written pi((n+1)^2) - pi(n^2) > 0 for all positive n, where pi(n) = A000720(n), [the prime counting function]. - Jonathan Vos Post, Jul 30 2008 [Comment corrected by Jonathan Sondow, Aug 15 2008]
Legendre's conjecture can be generalized as follows: for all integers n > 0 and all real numbers k > K, there is a prime in the range n^k to (n+1)^k. The constant K is conjectured to be log(127)/log(16). See A143935. - T. D. Noe, Sep 05 2008
For n > 0: number of occurrences of n^2 in A145445. - Reinhard Zumkeller, Jul 25 2014

Examples

			a(17) = 5 because between 17^2 and 18^2, i.e., 289 and 324, there are 5 primes (which are 293, 307, 311, 313, 317).
		

References

  • J. R. Goldman, The Queen of Mathematics, 1998, p. 82.

Crossrefs

First differences of A038107.
Counts of primes between consecutive higher powers: A060199, A061235, A062517.

Programs

  • Haskell
    a014085 n = sum $ map a010051 [n^2..(n+1)^2]
    -- Reinhard Zumkeller, Mar 18 2012
    
  • Mathematica
    Table[PrimePi[(n + 1)^2] - PrimePi[n^2], {n, 0, 80}] (* Lei Zhou, Dec 01 2005 *)
    Differences[PrimePi[Range[0,90]^2]] (* Harvey P. Dale, Nov 25 2015 *)
  • PARI
    a(n)=primepi((n+1)^2)-primepi(n^2) \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    from sympy import primepi
    def a(n): return primepi((n+1)**2) - primepi(n**2)
    print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 05 2021

Formula

a(n) = A000720((n+1)^2) - A000720(n^2). - Jonathan Vos Post, Jul 30 2008
a(n) = Sum_{k = n^2..(n+1)^2} A010051(k). - Reinhard Zumkeller, Mar 18 2012
Conjecture: for all n>1, abs(a(n)-(n/log(n))) < sqrt(n). - Alain Rocchelli, Sep 20 2023
Up to n=10^6 there are no counterexamples to this conjecture. - Hugo Pfoertner, Dec 16 2024
Sorenson & Webster show that a(n) > 0 for all 0 < n < 7.05 * 10^13. - Charles R Greathouse IV, Jan 31 2025

A245508 Smallest double square (cf. A001105) greater than n-th prime.

Original entry on oeis.org

2, 8, 8, 8, 18, 18, 18, 32, 32, 32, 32, 50, 50, 50, 50, 72, 72, 72, 72, 72, 98, 98, 98, 98, 98, 128, 128, 128, 128, 128, 128, 162, 162, 162, 162, 162, 162, 200, 200, 200, 200, 200, 200, 200, 200, 200, 242, 242, 242, 242, 242, 242, 242, 288, 288, 288, 288
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 25 2014

Keywords

Comments

For n > 2: prime(n) < a(n) < 2*prime(n) and a(n) = A245499(A000040(n),2).

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a245508 n = genericIndex a245508_list (n-1)
    a245508_list = f a000040_list a001105_list where
       f ps'@ (p:ps) xs'@(x:xs) = if p <= x then x : f ps xs' else f ps' xs
    
  • Mathematica
    Module[{nn=60,ds},ds=2 Range[0,Ceiling[Sqrt[Prime[nn]]]]^2;Join[ {2},Table[ SelectFirst[ds,#>Prime[n]&],{n,2,nn}]]] (* Harvey P. Dale, Jan 07 2020 *)
  • PARI
    a(n) = my(k=prime(n)+(n!=1)); while (! issquare(k/2), k+=2); k; \\ Michel Marcus, Jan 24 2022

A078327 Numbers k such that A078142(k) = A006530(k).

Original entry on oeis.org

2, 4, 6, 8, 12, 15, 16, 18, 24, 32, 36, 45, 48, 54, 64, 72, 75, 96, 105, 108, 110, 128, 135, 144, 162, 192, 216, 220, 225, 256, 288, 315, 324, 375, 384, 385, 405, 432, 440, 486, 512, 525, 550, 576, 648, 675, 735, 768, 864, 880, 935, 945, 972, 1024, 1100, 1125
Offset: 1

Views

Author

Jason Earls, Nov 24 2002

Keywords

Comments

Numbers k such that the sum of the differences of the distinct prime factors p of k and the next square larger than p is equal to the largest prime factor of k.
Are there any other consecutive terms in this sequence other than 15,16 and 384,385?

Crossrefs

Programs

  • PARI
    is(k) = {if(k<2, return(0)); my(f=factor(k)[, 1]); sum(i=1, #f, (sqrtint(f[i])+1)^2-f[i]) == vecmax(f); } \\ Jinyuan Wang, Apr 17 2020

Extensions

Offset changed to 1 by Jinyuan Wang, Apr 17 2020

A145447 a(n) = the smallest square (and/or cube) > n-th prime.

Original entry on oeis.org

4, 4, 8, 8, 16, 16, 25, 25, 25, 36, 36, 49, 49, 49, 49, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 121, 121, 121, 121, 121, 144, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 196, 196, 216, 216, 216, 225, 256, 256, 256, 256, 256, 256, 289, 289, 289, 289
Offset: 1

Views

Author

Zak Seidov, Oct 10 2008

Keywords

Comments

a(n) = min(A145445(n), A145446(n) )= min ([A104103(n)]^2, [A104147(n)]^3)

Crossrefs

Programs

  • Mathematica
    Table[Min[{Ceiling[Prime[n]^(1/3)]^3,Ceiling[Prime[n]^(1/2)]^2}],{n,100}]

A229067 Sum of n-th prime and next perfect square.

Original entry on oeis.org

6, 7, 14, 16, 27, 29, 42, 44, 48, 65, 67, 86, 90, 92, 96, 117, 123, 125, 148, 152, 154, 160, 183, 189, 197, 222, 224, 228, 230, 234, 271, 275, 281, 283, 318, 320, 326, 332, 336, 369, 375, 377, 387, 389, 422, 424, 436, 448, 483, 485, 489, 495, 497, 507, 546, 552
Offset: 1

Views

Author

Vincenzo Librandi, Sep 25 2013

Keywords

Comments

Primes in the sequence: 7, 29, 67, 197, 271, 281, 283, 389, 617, 631, 641, ...

Crossrefs

Programs

  • Mathematica
    (Floor[Sqrt[#]] + 1)^2 + # &/@Prime[Range[80]]

Formula

a(n) = A000040(n) + A145445(n).

A229497 Product between n-th prime and next perfect square.

Original entry on oeis.org

8, 12, 45, 63, 176, 208, 425, 475, 575, 1044, 1116, 1813, 2009, 2107, 2303, 3392, 3776, 3904, 5427, 5751, 5913, 6399, 8300, 8900, 9700, 12221, 12463, 12947, 13189, 13673, 18288, 18864, 19728, 20016, 25181, 25519, 26533, 27547, 28223, 33908, 35084, 35476, 37436
Offset: 1

Views

Author

Vincenzo Librandi, Sep 25 2013

Keywords

Examples

			63 is in the sequence because 7*9=63.
		

Crossrefs

Programs

  • Mathematica
    (Floor[Sqrt[#]] + 1)^2 # &/@Prime[Range[80]]

Formula

a(n) = A000040(n) * A145445(n).
Showing 1-7 of 7 results.