A146509 Numbers that are congruent to {1, 5} mod 18.
1, 5, 19, 23, 37, 41, 55, 59, 73, 77, 91, 95, 109, 113, 127, 131, 145, 149, 163, 167, 181, 185, 199, 203, 217, 221, 235, 239, 253, 257, 271, 275, 289, 293, 307, 311, 325, 329, 343, 347, 361, 365, 379, 383, 397, 401, 415, 419, 433, 437, 451, 455, 469, 473, 487
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[n: n in [1..500] | n mod 18 in [1,5]]; // Bruno Berselli, Jul 12 2012
-
Mathematica
Select[Range[500],MemberQ[{1,5},Mod[#,18]]&] (* Harvey P. Dale, Jul 24 2011 *)
-
PARI
a(n)=n\2*18+if(n%2,1,-13) \\ Charles R Greathouse IV, Jul 14 2012
Formula
a(2k-1) = 18*(k-1)+1, a(2k) = 18*(k-1)+5, where k>0.
G.f.: x*(1+4*x+13*x^2)/((1+x)*(1-x)^2). - Vincenzo Librandi, Jul 11 2012
a(n) = (18*n - 5*(-1)^n - 21)/2. - Bruno Berselli, Jul 12 2012 [Corrected by David Lovler, Sep 24 2022]
a(1)=1, a(n) = 18*n -a(n-1) -30. - Vincenzo Librandi, Jul 12 2012
E.g.f.: 13 + ((18*x - 21)*exp(x) - 5*exp(-x))/2. - David Lovler, Sep 05 2022
Extensions
Crossrefs corrected by Ray Chandler, Dec 06 2016
Comments