cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084773 Coefficients of 1/sqrt(1-12*x+4*x^2); also, a(n) is the central coefficient of (1+6*x+8*x^2)^n.

Original entry on oeis.org

1, 6, 52, 504, 5136, 53856, 575296, 6225792, 68026624, 748832256, 8291791872, 92255680512, 1030537089024, 11550176206848, 129824329777152, 1462841567576064, 16518691986407424, 186887008999047168, 2117944490818011136, 24038305911245635584, 273199990096465494016
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003

Keywords

Comments

Number of Delannoy paths from (0,0) to (n,n) with steps U(0,1), H(1,0) and D(1,1) where H and D can choose from two colors each (or where one step is monochrome and the other two are bicolored). - Paul Barry, May 30 2005
2^n*P_n(3), where P_n is the n-th Legendre polynomial. 2^n*LegendreP(n,k) yields the central coefficients of (1 + 2*k*x + (k^2-1)*x^2)^n, with g.f. 1/sqrt(1 -4*k*x +4*x^2) and e.g.f. exp(2*k*x)*BesselI(0, 2*sqrt(k^2-1)*x). - Paul Barry, May 30 2005
Diagonal of rational functions 1/(1 - x - 2*y - 2*x*y), 1/(1 - x - 2*y*z - 2*x*y*z), 1/(1 - 2*x - y*z - 2*x*y*z). - Gheorghe Coserea, Jul 07 2018

Examples

			G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.
		

Crossrefs

Sequences of the form 2^n*LegendreP(n, 2*m+1): A000079 (m=0), this sequence (m=1), A098270 (m=2).
See A152254 for another interpretation.

Programs

  • Magma
    [2^n*Evaluate(LegendrePolynomial(n), 3): n in [0..40]]; // G. C. Greubel, May 21 2023
    
  • Maple
    a := n -> 2^n*hypergeom([-n, -n], [1], 2):
    seq(simplify(a(n)), n=0..20); # Peter Luschny, May 20 2015
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-12x+4x^2)],{x,0,20}],x] (* Harvey P. Dale, Dec 13 2017 *)
    Table[2^n*LegendreP[n,3], {n,0,40}] (* G. C. Greubel, May 21 2023 *)
  • PARI
    for(n=0,30,t=polcoeff((1+6*x+8*x^2)^n,n,x); print1(t","))
    
  • SageMath
    [2^n*gen_legendre_P(n,0,3) for n in range(41)] # G. C. Greubel, May 21 2023

Formula

a(n) = 2*A052141(n) = 2^n * A001850(n), n>0.
From Paul Barry, May 30 2005: (Start)
E.g.f.: exp(6*x)*Bessel_I(0, 2*sqrt(8)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, k)*C(2(n-k), n)*(-1)^k*3^(n-2*k). (End)
D-finite with recurrence: n*a(n) + 6*(-2*n+1)*a(n-1) + 4*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
G.f.: G(0)/2, where G(k) = 1 + 1/( 1 - x*(6-2*x)*(2*k+1)/(x*(6-2*x)*(2*k+1) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n) = 2^n*hyper2F1(-n, -n, 1, 2). - Peter Luschny, May 20 2015
a(n) = A059474(n,n). - Alois P. Heinz, Oct 05 2017
a(n) ~ 2^(n - 5/4) * (1 + sqrt(2))^(2*n + 1) / sqrt(Pi*n). - Vaclav Kotesovec, Jul 11 2018

A326237 Number of non-nesting digraphs with vertices {1..n}, where two edges (a,b), (c,d) are nesting if a < c and b > d or a > c and b < d.

Original entry on oeis.org

1, 2, 12, 104, 1008, 10272, 107712, 1150592
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

These are digraphs with the property that, if the edges are listed in lexicographic order, the sequence of targets is weakly increasing. For example, the digraph with lexicographically ordered edge set {(1,2),(2,1),(3,1),(3,2)} is nesting because the targets are (2,1,1,2), a sequence that is not weakly increasing.
Also the number of non-semicrossing digraphs with vertices {1..n}, where two edges (a,b), (c,d) are semicrossing if a < c and b < d or a > c and b > d. For example, the a(2) = 4 non-semicrossing digraph edge-sets are:
{}
{11}
{12}
{21}
{22}
{11,12}
{11,21}
{12,21}
{12,22}
{21,22}
{11,12,21}
{12,21,22}
Apparently a duplicate of A152254. - R. J. Mathar, Jul 12 2019

Examples

			The a(2) = 12 non-nesting digraph edge-sets:
  {}
  {11}
  {12}
  {21}
  {22}
  {11,12}
  {11,21}
  {11,22}
  {12,22}
  {21,22}
  {11,12,22}
  {11,21,22}
		

Crossrefs

Nesting digraphs are A326209.
Non-nesting set partitions are A000108.
Non-capturing set partitions are A054391.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],OrderedQ[Last/@#]&]],{n,4}]

Formula

A002416(n) = a(n) + A326209(n).

A100631 Triangle read by rows: T(n,k) = 2*(T(n-1,k-1) - T(n-2,k-1) + T(n-1,k)) for 0 < k < n, T(n,0) = T(n,n) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 32, 32, 16, 1, 1, 32, 80, 104, 80, 32, 1, 1, 64, 192, 304, 304, 192, 64, 1, 1, 128, 448, 832, 1008, 832, 448, 128, 1, 1, 256, 1024, 2176, 3072, 3072, 2176, 1024, 256, 1, 1, 512, 2304, 5504, 8832, 10272, 8832, 5504, 2304, 512, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 03 2004

Keywords

Comments

From Petros Hadjicostas, Feb 09 2021: (Start)
The rectangular version (R(n,k): n,k >= 0) of this symmetric triangular array (T(n,k): 0 <= k <= n) is given by R(n,k) = T(n+k,k) for n,k >= 0. Conversely, T(n,k) = R(n-k, k) for 0 <= k <= n.
Note that [o.g.f of R](x,y) = [o.g.f. of T](x, y/x) and [o.g.f of T](x,y) = [o.g.f of R](x,x*y). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
All the conjectures below are true because one has to prove only one of them, and the rest follow from the proved one.
As Peter Luschny pointed out, one has to show only that the function S(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1) satisfies the recurrence S(n,k) = 2*(S(n,k-1) - S(n-1,k-1) + S(n-1,k)) for n, k > 0 and the initial conditions S(n,0) = S(0,n) = 1 for n >= 0.
This is quite easy to achieve because S(n,k) = 2^n*Sum_{s=0}^{k-1} binomial(k-1,s)*binomial(n+s-1,s) for n >= 0 and k >= 1. The proof of the recurrence relies on the identity binomial(m,n) = binomial(m-1, n) + binomial(m-1,n-1).
Note that without the 2^n in the formula R(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1), we essentially get array A049600.
In addition, note that without the 2^(n-k-1) in the formula T(n,k+1) = 2^(n-k-1)*hypergeom([-k, n-k+1], [1], -1), we essentially get A208341 (without the first column and the main diagonal of T). (End)

Examples

			From _Petros Hadjicostas_, Feb 09 2021: (Start)
Triangle T(n,k) (with rows n >= 0 and columns 0 <= k <= n) begins:
  1,
  1,   1,
  1,   2,    1,
  1,   4,    4,    1,
  1,   8,   12,    8,    1,
  1,  16,   32,   32,   16,    1,
  1,  32,   80,  104,   80,   32,    1,
  1,  64,  192,  304,  304,  192,   64,    1,
  1, 128,  448,  832, 1008,  832,  448,  128,   1,
  1, 256, 1024, 2176, 3072, 3072, 2176, 1024, 256, 1,
  ...
Rectangular array R(n,k) (with rows n >= 0 and columns k >= 0) begins:
  1,   1,    1,    1,     1,     1,      1,       1, ...
  1,   2,    4,    8,    16,    32,     64,     128, ...
  1,   4,   12,   32,    80,   192,    448,    1024, ...
  1,   8,   32,  104,   304,   832,   2176,    5504, ...
  1,  16,   80,  304,  1008,  3072,   8832,   24320, ...
  1,  32,  192,  832,  3072, 10272,  32064,   95104, ...
  1,  64,  448, 2176,  8832, 32064, 107712,  341504, ...
  1, 128, 1024, 5504, 24320, 95104, 341504, 1150592, ...
  ... (End)
		

Crossrefs

Programs

Formula

From Petros Hadjicostas, Feb 09 2021: (Start)
Formulas for the triangular array (T(n,k): 0 <= k <= n):
T(n,k) = T(n,n-k) for 0 <= k <= n.
Sum_{k=0..n} T(n,k) = A087161(n+1).
T(n,1) = T(n,n-1) = 2^(n-1) = A000079(n-1) for n >= 1.
T(n,2) = T(n,n-2) = (n-1)*2^(n-2) = A001787(n-1) for n >= 2.
T(n,3) = T(n,n-3) = (n^2-n-4)*2^(n-4) = A100312(n-3) for n >= 3.
T(n,floor(n/2)) = T(n,ceiling(n/2)) = A341344(n).
Bivariate o.g.f.: Sum_{n,k >= 0} T(n,k)*x^n*y^k = (3*x^2*y - 2*x*y - 2*x + 1)/((1 - x)*(-x*y + 1)*(2*x^2*y - 2*x*y - 2*x + 1)).
Conjecture based on Peter Luschny's formulas in other sequences: T(n,k) = 2^(n-k)*hypergeom([-k + 1, n-k], [1], -1) = 2^k*hypergeom([-(n-k) + 1, k], [1], -1).
Formulas for the rectangular array (R(n,k): n,k >= 0):
R(n,k) = 2*(R(n,k-1) - R(n-1,k-1) + R(n-1,k)) for n,k > 0 with R(n,0) = R(0,n) = 1 for n >= 0.
R(n,k) = R(k, n) for n,k >= 0.
R(1,n) = R(n,1) = 2^n = A000079(n).
R(2,n) = R(n,2) = (n+1)*2^n = A001787(n+1).
R(3,n) = R(n,3) = (n^2+5*n+2)*2^(n-1) = A100312(n).
R(n,n) = A152254(n-1) = 2*A084773(n-1) for n >= 1.
Bivariate o.g.f.: Sum_{n,k >= 0} R(n,k)*x^n*y^k = (3*x*y - 2*x - 2*y - 1)/((1 - x)*(1 - y)*(2*x*y - 2*x - 2*y - 1)).
Conjecture based on Peter Luschny's formulas in other sequences: R(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1) = 2^k*hypergeom([-n + 1, k], [1], -1). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
The above conjecture is true (see the comments).
R(n,k) = 2^k*Sum_{s=0}^{n-1} binomial(n-1,s)*binomial(k+s-1,s) = 2^n*Sum_{s=0}^{k-1} binomial(k-1,s)*binomial(n+s-1,s) for n, k >= 1.
To get two binomial formulas for T(n,k), use the equation T(n,k) = R(n-k, k) for 1 <= k <= n and the above formulas for R(n,k). (End)

Extensions

Offset changed by Petros Hadjicostas, Feb 09 2021

A341344 a(n) = A100631(n, floor(n/2)).

Original entry on oeis.org

1, 1, 2, 4, 12, 32, 104, 304, 1008, 3072, 10272, 32064, 107712, 341504, 1150592, 3688192, 12451584, 40239104, 136053248, 442442752, 1497664512, 4894728192, 16583583744, 54419632128, 184511361024, 607524225024, 2061074178048, 6805625192448, 23100352413696, 76462341095424, 259648659554304
Offset: 0

Views

Author

Petros Hadjicostas, Feb 09 2021

Keywords

Comments

"Middle" diagonal of Reinhard Zumkeller's symmetric (Pascal-like) triangular array A100631.

Crossrefs

Programs

  • PARI
    a(n) = {my(m=matrix(n+1, n+1)); for (i=1, n+1, for (j=1, n+1, if ((j==1) || (j==i), m[i, j] = 1, if (j<=n, m[i,j] = 2*(if (i>1, m[i-1,j-1] + m[i-1,j], 0) - if (i>2, m[i-2,j-1], 0) ))););); m[n+1, (n+2)\2];} \\ Michel Marcus, Feb 10 2021

Formula

a(n) = A100631(n, floor(n/2)) = A100631(n, ceiling(n/2)).
a(2*n) = A152254(n-1) = 2*A084773(n-1) for n >= 1.
a(n) = 2^ceiling(n/2)*hypergeom([-floor(n/2) + 1, ceiling(n/2)], [1], -1); see the comments for A100631. - Petros Hadjicostas, Feb 10 2021
Showing 1-4 of 4 results.