cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A194185 Primes of the form k^16 + (k+1)^16.

Original entry on oeis.org

65537, 4338014017, 2973697798081, 36054040477057, 314707907280257, 8746361693522261761, 4441930186581050471617, 1936348941361814438534657, 8260002645666200230661441, 157512780598351804823277697, 684655198104511486296198721, 21770695412796292350304592257
Offset: 1

Views

Author

Jonathan Vos Post, Aug 18 2011

Keywords

Comments

Prime 16-dimensional centered cube numbers. This is to dimension 16 as A194155 is to dimension 8 and as A152913 is to dimension 4.

Examples

			a(1) = 1^16 + (1+1)^16 = 65537 = A100266(2).
a(2) = 3^16 + (3+1)^16 = 4338014017 = A100266(3).
a(3) = 5^16 + (5+1)^16 = 2973697798081 = A100266(4).
a(4) = 6^16 + (6+1)^16 = 36054040477057 = A100266(5).
a(5) = 7^16 + (7+1)^16 = 314707907280257 = A100266(6).
a(6) = 14^16 + (14+1)^16 = 8746361693522261761 = A100266(11).
a(7) = 21^16 + (21+1)^16 = 4441930186581050471617 = A100266(22).
		

Crossrefs

Programs

  • Magma
    [ a: n in [1..100] | IsPrime(a) where a is n^16+(n+1)^16 ]; // Vincenzo Librandi, Dec 07 2011
  • Mathematica
    Select[Table[n^16+(n+1)^16,{n,0,800}],PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
    Select[Total/@Partition[Range[60]^16,2,1],PrimeQ] (* Harvey P. Dale, Dec 07 2017 *)

A155211 Numbers n such that n^4+(n+1)^4 is a prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 13, 14, 16, 25, 26, 27, 31, 33, 34, 36, 37, 38, 40, 43, 48, 54, 63, 67, 68, 72, 74, 78, 82, 87, 88, 89, 97, 98, 104, 105, 109, 110, 111, 119, 121, 122, 123, 129, 145, 156, 157, 162, 163, 166, 167, 172, 173, 179, 180, 182, 184, 186, 187, 189, 195
Offset: 1

Views

Author

Vincenzo Librandi, Jan 22 2009

Keywords

Crossrefs

Programs

A194216 Primes of the form k^32 + (k+1)^32.

Original entry on oeis.org

3512911982806776822251393039617, 2211377674535255285545615254209921, 476961452964007550415682034114910337, 46677208572152524490331633250547044320123137
Offset: 1

Views

Author

Jonathan Vos Post, Aug 18 2011

Keywords

Comments

Prime 32-dimensional centered cube numbers. This is to dimension 32 as A194185 is to dimension 16; as A194155 is to dimension 8; and as A152913 is to dimension 4.

Examples

			a(1) = 8^32 + (8 + 1)^32 = A100267(2).
a(2) = 10^32 + (10 + 1)^32 = A100267(3) = A176935(2).
a(3) = 12^32 + (12 + 1)^32 = A100267(4).
a(4) = 22^32 + (22 + 1)^32.
		

Crossrefs

Programs

  • Magma
    [a: n in [1..200] | IsPrime(a) where a is n^32+(n+1)^32]; // Vincenzo Librandi, Dec 08 2011
  • Mathematica
    Select[Table[n^32+(n+1)^32,{n,1,3000}],PrimeQ] (* Vincenzo Librandi, Dec 08 2011 *)

A036085 Centered cube numbers: (n+1)^7 + n^7.

Original entry on oeis.org

1, 129, 2315, 18571, 94509, 358061, 1103479, 2920695, 6880121, 14782969, 29487171, 55318979, 98580325, 168162021, 276272879, 439294831, 678774129, 1022558705, 1506091771, 2173871739, 3081088541, 4295446429, 5899183335, 7991296871, 10689987049, 14135325801
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n+1)*(n^6 + 3n^5 + 9n^4 + 13n^3 + 11n^2 + 5n + 1). Semiprimes in the sequence begin for n = 1, 2, 8, 9, 21, 30, 33, 53, 65, 81, 83. - Jonathan Vos Post, Aug 26 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

Formula

a(n) = A001015(n+1) + A001015(n).
G.f.: (1+x)*(x^6 + 120*x^5 + 1191*x^4 + 2416*x^3 + 1191*x^2 + 120*x + 1) / (x-1)^8. - R. J. Mathar, Aug 27 2011

A174156 Numbers n such that n^32+(n+1)^32 is a prime.

Original entry on oeis.org

8, 10, 12, 22, 100, 146, 154, 219, 246, 269, 287, 309, 336, 373, 392, 398, 423, 440, 449, 476, 515, 540, 557, 628, 671, 693, 715, 733, 746, 780, 848, 879, 913, 924, 926, 937, 974, 975, 1130, 1191, 1193, 1198, 1204, 1260, 1272, 1316, 1378, 1400, 1414, 1451
Offset: 1

Views

Author

Vincenzo Librandi, Mar 10 2010

Keywords

Crossrefs

Programs

A174157 Numbers n such that n^64+(n+1)^64 is a prime.

Original entry on oeis.org

95, 302, 443, 546, 755, 850, 878, 962, 983, 988, 1014, 1026, 1349, 1433, 1541, 1711, 1735, 1897, 1901, 1958, 1961, 1966, 2052, 2058, 2070, 2096, 2142, 2167, 2170, 2208, 2333, 2421, 2471, 2490, 2503, 2527, 2571, 2637, 2643, 2813, 2820, 2885, 2994
Offset: 1

Views

Author

Vincenzo Librandi, Mar 10 2010

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(n^64+(n+1)^64)]
  • Mathematica
    lst={}; Do[If[PrimeQ[n^64+(n+1)^64], AppendTo[lst, n]], {n, 3000}]; lst (* Vincenzo Librandi_, Aug 31 2012 *)
    Position[Total/@Partition[Range[3000]^64,2,1],?(PrimeQ[#]&)]//Flatten (* _Harvey P. Dale, Aug 01 2021 *)

A215431 Numbers n such that n^128+(n+1)^128 is a prime.

Original entry on oeis.org

31, 37, 65, 191, 255, 287, 359, 786, 836, 1178, 1229, 1503, 1601, 1609, 2093, 2103, 2254, 2307, 2471, 2934, 2978, 3215, 3220, 3363, 3402, 3705, 3724, 3892, 3894, 3976, 4094, 4478, 4490, 4535, 4566, 4683, 4749, 4752, 4789, 4918, 5064, 6061, 6162, 6167
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[7000], PrimeQ[#^128 + (# + 1)^128] &]

A036087 Centered cube numbers: a(n) = (n+1)^9 + n^9.

Original entry on oeis.org

1, 513, 20195, 281827, 2215269, 12030821, 50431303, 174571335, 521638217, 1387420489, 3357947691, 7517728043, 15764279725, 31265546157, 59104406159, 107162836111, 187307353233, 316947166865
Offset: 0

Views

Author

Keywords

Comments

Never prime nor semiprime, as a(n) = (2n+1) * (n^2 + n + 1) * (n^6 + 3n^5 + 12n^4 + 19n^3 + 15n^2 + 6n + 1). - Jonathan Vos Post, Aug 26 2011
Triprimes (A014612) if n = 2, 5, 6, 14, 21, 75, 90, ... - R. J. Mathar, Aug 27 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

  • Magma
    [(n+1)^9+n^9: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Mathematica
    Total/@Partition[Range[0,20]^9,2,1] (* Harvey P. Dale, Jan 31 2015 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,513,20195,281827,2215269,12030821,50431303,174571335,521638217,1387420489},20] (* Harvey P. Dale, Jan 21 2023 *)
  • PARI
    a(n)=(n+1)^9+n^9 \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(n) = A001017(n+1) + A001017(n).
G.f.: (1+x)*(x^8 + 502*x^7 + 14608*x^6 + 88234*x^5 + 156190*x^4 + 88234*x^3 + 14608*x^2 + 502*x + 1) / (x-1)^10. - R. J. Mathar, Aug 27 2011

A036088 Centered cube numbers: (n+1)^10 + n^10.

Original entry on oeis.org

1, 1025, 60073, 1107625, 10814201, 70231801, 342941425, 1356217073, 4560526225, 13486784401, 35937424601, 87854788825, 199775856073, 427113146825, 865905045601, 1676162018401, 3115505528225
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n^2 + 2n + 1) * (n^8 + 4n^7 + 18n^6 + 40n^5 + 56n^4 + 50n^3 + 27n^2 + 8n + 1), multiple of A001844(n). Semiprime for n in {2, 4, 7, 14, 19, 22, 32, 60, 65, 70, 87, 99, 102, 135, 137, ...}. - Jonathan Vos Post, Aug 26 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

  • Magma
    [(n+1)^10+n^10: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
  • Mathematica
    Total/@Partition[Range[0,20]^10,2,1] (* Harvey P. Dale, Aug 04 2019 *)

Formula

G.f.: -(x^8 + 1012*x^7 + 46828*x^6 + 408364*x^5 + 901990*x^4 + 408364*x^3 + 46828*x^2 + 1012*x + 1)*(1+x)^2 / (x-1)^11. - R. J. Mathar, Aug 27 2011

A215432 Numbers n such that n^256+(n+1)^256 is a prime.

Original entry on oeis.org

85, 86, 157, 190, 195, 421, 504, 539, 621, 895, 1018, 1159, 1314, 1463, 1482, 1538, 1959, 2036, 2368, 2537, 2618, 2651, 3085, 3148, 3205, 3230, 3347, 3370, 3807, 4061, 4089, 4448, 4641, 4697, 4723, 4851, 4945
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[#^256 + (# + 1)^256] &];
Showing 1-10 of 22 results. Next