A156638 Numbers k such that k^2 + 2 == 0 (mod 9).
4, 5, 13, 14, 22, 23, 31, 32, 40, 41, 49, 50, 58, 59, 67, 68, 76, 77, 85, 86, 94, 95, 103, 104, 112, 113, 121, 122, 130, 131, 139, 140, 148, 149, 157, 158, 166, 167, 175, 176, 184, 185, 193, 194, 202, 203, 211, 212, 220, 221, 229, 230, 238, 239, 247, 248, 256
Offset: 1
References
- Henri Cohen, Number Theory Volume I: Tools and Diophantine Equations. Springer Verlag (2007) p. 380. - Artur Jasinski, Apr 30 2010
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Andrew Sutherland, Sums of three cubes, Slides of a talk given May 07 2020 on the Number Theory Web.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[9*n/2 - 9/4 - 7*(-1)^n/4 : n in [1..80]]; // Wesley Ivan Hurt, Aug 16 2015
-
Maple
A156638:=n->9*n/2 - 9/4 - 7*(-1)^n/4: seq(A156638(n), n=1..80); # Wesley Ivan Hurt, Aug 16 2015
-
Mathematica
LinearRecurrence[{1, 1, -1}, {4, 5, 13}, 50] (* Vincenzo Librandi, Mar 01 2012 *) Flatten[Table[9n - {5, 4}, {n, 30}]] (* Alonso del Arte, Aug 09 2015 *) Select[Range[300],PowerMod[#,2,9]==7&] (* Harvey P. Dale, Jan 31 2023 *)
-
PARI
a(n) = (18*n - 9 - 7*(-1)^n)/4 \\ David Lovler, Aug 21 2022
Formula
For n > 2, a(n) = a(n-2) + 9.
G.f.: x*(4*x^2 + x + 4)/(x^3 - x^2 - x + 1). - Alexander R. Povolotsky, Feb 15 2009
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3), n>3.
a(n) = 9*n/2 - 9/4 - 7*(-1)^n/4.
G.f.: x*(4 + x + 4*x^2)/((1 + x)*(1 - x)^2). (End)
a(n) = -a(-n+1). - Bruno Berselli, Jan 08 2012
E.g.f.: 4 + ((18*x - 9)*exp(x) - 7*exp(-x))/4. - David Lovler, Aug 21 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(Pi/18)*Pi/9. - Amiram Eldar, Sep 26 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1.
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*cos(Pi/9) - 1 (= A332437 - 1). (End)
Comments