cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A060464 Numbers that are not congruent to 4 or 5 mod 9.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 87, 88, 89, 90, 91
Offset: 1

Views

Author

N. J. A. Sloane, Apr 10 2001

Keywords

Comments

Conjecture: n is a sum of three cubes iff n is in this sequence.
As of their 2009 paper, Elsenhans and Jahnel did not know of a sum of three cubes that gives 33 or 42.
The problem with 33 is cracked, see links below: 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3 = 33. - Alois P. Heinz, Mar 11 2019
Numbers that are congruent to {0, 1, 2, 3, 6, 7, 8} mod 9. - Wesley Ivan Hurt, Jul 21 2016
Heath-Brown conjectures that n is a sum of three cubes in infinitely many ways iff n is in this sequence (and not at all otherwise). See his paper for a conjectural asymptotic. - Charles R Greathouse IV, Mar 12 2019
The problem with 42 is cracked by Andrew Booker from University of Bristol and Andrew Sutherland from Massachusetts Institute of Technology, see the link below: 42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3. - Jianing Song, Sep 07 2019
A third solution to writing 3 as a sum of three third powers was found by the same team using 4 million computer-hours. 3 = 569936821221962380720^3 + (-569936821113563493509)^3 + (-472715493453327032)^3. - Peter Luschny, Sep 20 2019

Examples

			30 belongs to this sequence because it has the partition as sum of 3 cubes 30 = (-283059965)^3 + (-2218888517)^3 + (2220422932)^3. - _Artur Jasinski_, Apr 30 2010, edited by _M. F. Hasler_, Nov 10 2015
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D5.
  • Cohen H. 2007. Number Theory Volume I: Tools and Diophantine Equations. Springer Verlag p. 380. - Artur Jasinski, Apr 30 2010

Crossrefs

A156638 is the complement of this sequence.

Programs

  • GAP
    A060464:=Filtered([0..100],n->n mod 9 <>4 and n mod 9 <>5); # Muniru A Asiru, Feb 17 2018
  • Magma
    [n : n in [0..150] | n mod 9 in [0, 1, 2, 3, 6, 7, 8]]; // Wesley Ivan Hurt, Jul 21 2016
    
  • Maple
    for n from 0 to 100 do if n mod 9 <> 4 and n mod 9 <> 5 then printf(`%d,`, n) fi:od:
  • Mathematica
    a = {}; Do[If[(Mod[n, 9] == 4) || (Mod[n, 9] == 5), , AppendTo[a, n]], {n, 1, 300}]; a (* Artur Jasinski, Apr 30 2010 *)
    Which[Mod[#,9]==4,Nothing,Mod[#,9]==5,Nothing,True,#]&/@Range[0,100] (* Harvey P. Dale, Jul 31 2023 *)
  • PARI
    n=-1; for (m=0, 4000, if (m%9!=4 && m%9!=5, write("b060464.txt", n++, " ", m)); if (n==2000, break)) \\ Harry J. Smith, Jul 05 2009
    
  • PARI
    concat(0, Vec(x^2*(x^3+x^2+1)*(x^3+x+1)/((1+x+x^2+x^3+x^4+x^5+x^6)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Nov 06 2015
    
  • PARI
    a(n)=n\7*9+[0, 1, 2, 3, 6, 7, 8][n%7+1] \\ Charles R Greathouse IV, Nov 06 2015
    

Formula

G.f.: x^2*(x^3+x^2+1)*(x^3+x+1) / ( (1+x+x^2+x^3+x^4+x^5+x^6)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8; a(n) = a(n-7) + 9 for n>7.
a(n) = (63*n - 63 + 2*(n mod 7) + 2*((n+1) mod 7) - 12*((n+2) mod 7) + 2*((n+3) mod 7) + 2*((n+4) mod 7) + 2*((n+5) mod 7) + 2*((n+6) mod 7))/49.
a(7k) = 9k-1, a(7k-1) = 9k-2, a(7k-2) = 9k-3, a(7k-3) = 9k-6, a(7k-4) = 9k-7, a(7k-5) = 9k-8, a(7k-6) = 9k-9. (End)

Extensions

More terms from James Sellers, Apr 11 2001

A332437 Decimal expansion of 2*cos(Pi/9).

Original entry on oeis.org

1, 8, 7, 9, 3, 8, 5, 2, 4, 1, 5, 7, 1, 8, 1, 6, 7, 6, 8, 1, 0, 8, 2, 1, 8, 5, 5, 4, 6, 4, 9, 4, 6, 2, 9, 3, 9, 8, 7, 2, 4, 1, 6, 2, 6, 8, 5, 2, 8, 9, 2, 9, 2, 6, 6, 1, 8, 0, 5, 7, 3, 3, 2, 5, 5, 4, 8, 4, 4, 2, 4, 2, 1, 9, 9, 1, 7, 7, 8, 9, 1, 7, 8, 9, 9, 4, 9, 1, 7, 7, 9, 6, 7, 5, 8, 9, 6, 1, 3, 4, 9
Offset: 1

Views

Author

Wolfdieter Lang, Mar 27 2020

Keywords

Comments

This algebraic number called rho(9) of degree 3 = A055034(9) has minimal polynomial C(9, x) = x^3 - 3*x - 1 (see A187360).
rho(9) gives the length ratio diagonal/side of the smallest diagonal in the regular 9-gon.
The length ratio diagonal/side of the second smallest and the third smallest (or the largest) diagonal in the regular 9-gon are rho(9)^2 - 1 = A332438 - 1 and rho(9) + 1, respectively. - Mohammed Yaseen, Oct 31 2020

Examples

			rho(9) = 1.87938524157181676810821855464946293987241626852892926618...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Programs

  • Mathematica
    RealDigits[2 * Cos[Pi/9], 10, 100][[1]] (* Amiram Eldar, Mar 27 2020 *)
  • PARI
    2*cos(Pi/9) \\ Michel Marcus, Mar 28 2020

Formula

rho(9) = 2*cos(Pi/9).
Equals (-1)^(-1/9)*((-1)^(1/9) - i)*((-1)^(1/9) + i). - Peter Luschny, Mar 27 2020
Equals 2*A019879. - Michel Marcus, Mar 28 2020
Equals sqrt(A332438). - Mohammed Yaseen, Oct 31 2020
From Peter Bala, Oct 20 2021: (Start)
The zeros of x^3 - 3*x - 1 are r_1 = -2*cos(2*Pi/9), r_2 = -2*cos(4*Pi/9) and r_3 = -2*cos(8*Pi/9) = 2*cos(Pi/9).
The polynomial x^3 - 3*x - 1 is irreducible over Q (since it is irreducible mod 2) with discriminant equal to 3^4, a square. It follows that the Galois group of the number field Q(2*cos(Pi/9)) over Q is cyclic of order 3.
The mapping r -> 2 - r^2 cyclically permutes the zeros r_1, r_2 and r_3. The inverse cyclic permutation is given by r -> r^2 - r - 2.
The first differences r_1 - r_2, r_2 - r_3 and r_3 - r_1 are the zeros of the cyclic cubic polynomial x^3 - 9*x - 9 of discriminant 3^6.
First quotient relations:
r_1/r_2 = 1 + (r_3 - r_1); r_2/r_3 = 1 + (r_1 - r_2); r_3/r_1 = 1 + (r_2 - r_3);
r_2/r_1 = (r_3 - r_2) - 2; r_3/r_2 = (r_1 - r_3) - 2; r_1/r_3 = (r_2 - r_1) - 2;
r_1/r_2 + r_2/r_3 + r_3/r_1 = 3; r_2/r_1 + r_3/r_2 + r_1/r_3 = -6.
Thus the first quotients r_1/r_2, r_2/r_3 and r_3/r_1 are the zeros of the cyclic cubic polynomial x^3 - 3*x^2 - 6*x - 1 of discriminant 3^6. See A214778.
Second quotient relations:
(r_1*r_2)/(r_3^2) = 3*r_2 - 6*r_1 - 8, with two other similar relations by cyclically permuting the 3 zeros. The three second quotients are the zeros of the cyclic cubic polynomial x^3 + 24*x^2 + 3*x - 1 of discriminant 3^10.
(r_1^2)/(r_2*r_3) = 1 - 3*(r_2 + r_3), with two other similar relations by cyclically permuting the 3 zeros. (End)
Equals i^(2/9) + i^(-2/9). - Gary W. Adamson, Jun 25 2022
Equals Re((4+4*sqrt(3)*i)^(1/3)). - Gerry Martens, Mar 19 2024
From Amiram Eldar, Nov 22 2024: (Start)
Equals Product_{k>=1} (1 - (-1)^k/A056020(k)).
Equals 1 + Product_{k>=1} (1 + (-1)^k/A156638(k)). (End)

A185039 Numbers of the form 9*m^2 + 4*m, m an integer.

Original entry on oeis.org

0, 5, 13, 28, 44, 69, 93, 128, 160, 205, 245, 300, 348, 413, 469, 544, 608, 693, 765, 860, 940, 1045, 1133, 1248, 1344, 1469, 1573, 1708, 1820, 1965, 2085, 2240, 2368, 2533, 2669, 2844, 2988, 3173, 3325, 3520, 3680, 3885, 4053, 4268, 4444, 4669, 4853, 5088
Offset: 1

Views

Author

N. J. A. Sloane, Feb 04 2012

Keywords

Comments

Also, numbers m such that 9*m+4 is a square. After 0, therefore, there are no squares in this sequence. - Bruno Berselli, Jan 07 2016

Crossrefs

Characteristic function is A205809.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), A132355 (k=2), this sequence (k=4), A057780 (k=6), A218864 (k=8). [Jason Kimberley, Nov 08 2012]
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

  • Magma
    [0] cat &cat[[9*n^2-4*n,9*n^2+4*n]: n in [1..32]]; // Bruno Berselli, Feb 04 2011
    
  • Mathematica
    CoefficientList[Series[x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3), {x,0,50}], x] (* G. C. Greubel, Jun 20 2017 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,5,13,28,44},50] (* Harvey P. Dale, Jan 23 2018 *)
  • PARI
    x='x+O('x^50); Vec(x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3)) \\ G. C. Greubel, Jun 20 2017

Formula

From Bruno Berselli, Feb 04 2012: (Start)
G.f.: x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3).
a(n) = a(-n+1) = (18*n*(n-1)+(2*n-1)*(-1)^n+1)/8 = A004526(n)*A156638(n). (End).

A266956 Numbers m such that 9*m+7 is a square.

Original entry on oeis.org

1, 2, 18, 21, 53, 58, 106, 113, 177, 186, 266, 277, 373, 386, 498, 513, 641, 658, 802, 821, 981, 1002, 1178, 1201, 1393, 1418, 1626, 1653, 1877, 1906, 2146, 2177, 2433, 2466, 2738, 2773, 3061, 3098, 3402, 3441, 3761, 3802, 4138, 4181, 4533, 4578, 4946, 4993, 5377, 5426
Offset: 1

Views

Author

Bruno Berselli, Jan 07 2016

Keywords

Comments

Equivalently, numbers of the form h*(9*h+8)+1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ...
Also, integer values of k*(k+8)/9 plus 1.
It is easy to see that the Diophantine equation 9*x+3*j+1 = y^2 has infinitely many solutions in integers (x,y) for any j in Z. It follows a table with j = -5..5:
...
j = -5, x: 2, 7, 15, 30, 46, 71, 95, 130, 162, 207, 247, ...
j = -4, x: 3, 4, 20, 23, 55, 60, 108, 115, 179, 188, 268, ...
j = -3, x: 1, 8, 12, 33, 41, 76, 88, 137, 153, 216, 236, ...
j = -2, x: 1, 6, 14, 29, 45, 70, 94, 129, 161, 206, 246, ...
j = -1, x: 2, 3, 19, 22, 54, 59, 107, 114, 178, 187, 267, ...
j = 0, x: 0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, ... (A132355)
j = 1, x: 0, 5, 13, 28, 44, 69, 93, 128, 160, 205, 245, ... (A185039)
j = 2, x: 1, 2, 18, 21, 53, 58, 106, 113, 177, 186, 266, ... (A266956)
j = 3, x: -1, 6, 10, 31, 39, 74, 86, 135, 151, 214, 234, ... (A266957)
j = 4, x: -1, 4, 12, 27, 43, 68, 92, 127, 159, 204, 244, ... (A266958)
j = 5, x: 0, 1, 17, 20, 52, 57, 105, 112, 176, 185, 265, ... (A218864)
...
The general closed form of these sequences is:
b(n,j) = (18*(n-1)*n + s(j)*(2*n-1)*(-1)^n + t(j))/8, where s(j) = 6*(-j) + 18*floor(j/3) - (-1)^floor(2*(j+1)/3) + 6 and t(j) = 4*(-j) + 4*floor((j+1)/3) + 5.
a(2m) - a(2m-1) gives the odd numbers (A005408); a(2m+1) - a(2m) gives the multiples of 16 (A008598).

Crossrefs

Cf. numbers m such that 9*m+i: A132355 (i=1), A185039 (i=4), this sequence (i=7), A005563 (i=9), A266957 (i=10), A266958 (i=13), A218864 (i=16), A008865 (i=18, without -2).
Cf. A156638: square roots of 9*a(n)+7.

Programs

  • Magma
    [n: n in [0..6000] | IsSquare(9*n+7)];
    
  • Magma
    [(18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8: n in [1..50]];
  • Mathematica
    Select[Range[0, 6000], IntegerQ[Sqrt[9 # + 7]] &]
    Table[(18 (n - 1) n - 7 (2 n - 1) (-1)^n + 1)/8, {n, 1, 50}]
  • PARI
    for(n=0, 6000, if(issquare(9*n+7), print1(n, ", ")))
    
  • PARI
    vector(50, n, n; (18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8)
    
  • Python
    from gmpy2 import is_square
    [n for n in range(6000) if is_square(9*n+7)]
    
  • Python
    [(18*(n-1)*n-7*(2*n-1)*(-1)**n+1)/8 for n in range(1, 60)]
    
  • Sage
    [n for n in (0..6000) if is_square(9*n+7)]
    
  • Sage
    [(18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8 for n in (1..50)]
    

Formula

G.f.: x*(1 + x + 14*x^2 + x^3 + x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (18*(n-1)*n - 7*(2*n-1)*(-1)^n + 1)/8.
a(n) = A218864(n) + 1.

A262711 Numbers k such that sum of digits of k^2 is 7.

Original entry on oeis.org

4, 5, 32, 40, 49, 50, 149, 320, 400, 490, 500, 1049, 1490, 3200, 4000, 4900, 5000, 10490, 14900, 32000, 40000, 49000, 50000, 104900, 149000, 320000, 400000, 490000, 500000, 1049000, 1490000, 3200000, 4000000, 4900000, 5000000, 10490000, 14900000
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2015

Keywords

Comments

Subsequence of A156638. [Bruno Berselli, Sep 28 2015]

Examples

			4 is in sequence because 4^2 = 16 and 1+6 = 7.
		

Crossrefs

Cf. sum of digits of n^2 is k: A052216 (k=4), this sequence (k=7), A262712 (k=9), A262713 (k=10).
Cf. A215614.

Programs

  • Magma
    [n: n in [1..2*10^7] | &+Intseq(n^2) eq 7];
    
  • Mathematica
    Select[Range[10^7], Total[IntegerDigits[#^2]] == 7 &]
  • PARI
    for(n=1, 1e8, if (sumdigits(n^2) == 7, print1(n", "))) \\ Altug Alkan, Sep 28 2015

A334521 Numbers that are not congruent to +- mod 9 and are neither a cube nor twice a cube.

Original entry on oeis.org

3, 6, 7, 9, 10, 11, 12, 15, 17, 18, 19, 20, 21, 24, 25, 26, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 105, 106, 107, 108, 109
Offset: 1

Views

Author

N. J. A. Sloane, May 08 2020

Keywords

Crossrefs

Complement of A334522.

A334522 Numbers that are either congruent to +-4 mod 9, or else are cubes or twice cubes.

Original entry on oeis.org

1, 2, 4, 5, 8, 13, 14, 16, 22, 23, 27, 31, 32, 40, 41, 49, 50, 54, 58, 59, 64, 67, 68, 76, 77, 85, 86, 94, 95, 103, 104, 112, 113, 121, 122, 125, 128, 130, 131, 139, 140, 148, 149, 157, 158, 166, 167, 175, 176, 184, 185, 193, 194, 202, 203, 211, 212, 216, 220, 221, 229, 230, 238, 239, 247, 248, 250, 256, 257, 265
Offset: 1

Views

Author

N. J. A. Sloane, May 08 2020

Keywords

Crossrefs

Complement of A334521.

A299647 Positive solutions to x^2 == -2 (mod 11).

Original entry on oeis.org

3, 8, 14, 19, 25, 30, 36, 41, 47, 52, 58, 63, 69, 74, 80, 85, 91, 96, 102, 107, 113, 118, 124, 129, 135, 140, 146, 151, 157, 162, 168, 173, 179, 184, 190, 195, 201, 206, 212, 217, 223, 228, 234, 239, 245, 250, 256, 261, 267, 272, 278, 283, 289, 294, 300, 305, 311, 316
Offset: 1

Views

Author

Bruno Berselli, Mar 06 2018

Keywords

Comments

Positive numbers congruent to {3, 8} mod 11.
Equivalently, interleaving of A017425 and A017485.

Crossrefs

Subsequence of A106252, A279000.
Cf. A017497: positive solutions to x == -2 (mod 11).
Cf. A017437: positive solutions to x^3 == -2 (mod 11).
Nonnegative solutions to x^2 == -2 (mod j): A005843 (j=2), A001651 (j=3), A047235 (j=6), A156638 (j=9), this sequence (j=11).

Programs

  • GAP
    List([1..60], n -> 5*n-2+(2*n-(-1)^n-3)/4);
    
  • Julia
    [(11(2n-1)-(-1)^n)>>2 for n in 1:60] # Peter Luschny, Mar 07 2018
  • Magma
    [5*n-2+(2*n-(-1)^n-3)/4: n in [1..60]];
    
  • Mathematica
    Table[5 n - 2 + (2 n - (-1)^n - 3)/4, {n, 1, 60}]
    CoefficientList[ Series[(3 + 5x + 3x^2)/((x - 1)^2 (x + 1)), {x, 0, 57}], x] (* or *)
    LinearRecurrence[{1, 1, -1}, {3, 8, 14}, 58] (* Robert G. Wilson v, Mar 08 2018 *)
  • Maxima
    makelist(5*n-2+(2*n-(-1)^n-3)/4, n, 1, 60);
    
  • PARI
    vector(60, n, nn; 5*n-2+(2*n-(-1)^n-3)/4)
    
  • Python
    [5*n-2+(2*n-(-1)**n-3)/4 for n in range(1, 60)]
    
  • Sage
    [5*n-2+(2*n-(-1)^n-3)/4 for n in (1..60)]
    

Formula

O.g.f.: x*(3 + 5*x + 3*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (-1 + 12*exp(x) - 11*exp(2*x) + 22*x*exp(2*x))*exp(-x)/4.
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 5*n - 2 + (2*n - (-1)^n - 3)/4.
a(n) = 4*n - 1 + floor((n - 1)/2) + floor((3*n - 1)/3).
a(n+k) - a(n) = 11*k/2 + (1 - (-1)^k)*(-1)^n/4.
a(n+k) + a(n) = 11*(2*n + k - 1)/2 - (1 + (-1)^k)*(-1)^n/4.
E.g.f.: 3 + ((22*x - 11)*exp(x) - exp(-x))/4. - David Lovler, Aug 08 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/22)*Pi/11. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(3*Pi/22)/2.
Product_{n>=1} (1 + (-1)^n/a(n)) = sec(5*Pi/22)*sin(2*Pi/11). (End)
Showing 1-8 of 8 results.