A141459 a(n) = Product_{p-1 divides n} p, where p is an odd prime.
1, 1, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1, 435, 1, 177, 1, 28393365, 1, 3, 1, 255, 1, 32361, 1, 15, 1, 2343, 1, 70050435
Offset: 0
Keywords
Examples
The denominators of 1, 0, -1/3, 0, 7/15, 0, -31/21, 0, 127/15, 0, -2555/33, 0, 1414477/1365, ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Peter Luschny, Generalized Bernoulli Numbers and Polynomials
Programs
-
Maple
Bfun := (s,z) -> `if`(s=0,1,-s*z^s*Zeta(0,1-s,1/z): # generalized Bernoulli function Bpoly := (m,n,z) -> add(Bfun(j,m)*binomial(n,j)*(z-1)^(n-j),j=0..n): # generalized Bernoulli polynomials seq(Bpoly(2,n,1),n=0..50): denom([%]); # which simplifies to: a := n -> 0^n+add(Zeta(1-j)*(2^j-2)*j*binomial(n,j), j=1..n): seq(denom(a(n)), n=0..50); # Peter Luschny, May 17 2015 # Alternatively: with(numtheory): ClausenOdd := proc(n) local S, m; S := map(i -> i + 1, divisors(n)); S := select(isprime, S) minus {2}; mul(m, m = S) end: seq(ClausenOdd(n), n=0..72); # Peter Luschny, Nov 22 2015 # Alternatively: N:= 1000: # to get a(0) to a(N) V:= Array(0..N, 1): for p in select(isprime, [seq(i,i=3..N+1,2)]) do R:=[seq(j,j=p-1..N, p-1)]: V[R]:= V[R] * p; od: convert(V,list); # Robert Israel, Nov 22 2015
-
Mathematica
a[n_] := If[OddQ[n], 1, Denominator[-2*(2^(n - 1) - 1)*BernoulliB[n]]]; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Jan 30 2013 *) Table[Times @@ Select[Divisors@ n + 1, PrimeQ@ # && OddQ@ # &] + Boole[n == 0], {n, 0, 72}] (* Michael De Vlieger, Apr 30 2017 *)
-
PARI
A141056(n) = { p = 1; if (n > 0, fordiv(n, d, r = d + 1; if (isprime(r) & r>2, p = p*r) ) ); return(p) } for(n=0, 72, print1(A141056(n), ", ")); \\ Peter Luschny, Nov 22 2015
-
Sage
def A141459_list(size): f = x / sum(x^(n*2+1)/factorial(n*2+1) for n in (0..2*size)) t = taylor(f, x, 0, size) return [(factorial(n)*s).denominator() for n,s in enumerate (t.list())] print(A141459_list(72)) # Peter Luschny, Jul 05 2016
Formula
a(2*n+1) = 1. a(2*n)= A001897(n).
a(n) = denominator(0^n + Sum_{j=1..n} zeta(1-j)*(2^j-2)*j*C(n,j)). - Peter Luschny, May 17 2015
Let P(x)= Sum_{n>=0} x^(2*n+1)/(2*n+1)! then a(n) = denominator( n! [x^n] x/P(x) ). - Peter Luschny, Jul 05 2016
a(n) = A157818(n)/4^n. See a comment under A157817, also for other Bernoulli numbers B[4,1] and B[4,3] with this denominator. - Wolfdieter Lang, Apr 28 2017
Extensions
1 prepended and offset set to 0 by Peter Luschny, May 17 2015
New name from Peter Luschny, Nov 22 2015
Comments