cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A140762 Erroneous version of A159578.

Original entry on oeis.org

30, 9699690, 304250263527210, 267064515689275851355624017992790, 5766152219975951659023630035336134306565384015606066319856068810, 962947420735983927056946215901134429196419130606213075415963491270
Offset: 1

Views

Author

Keywords

A051838 Numbers k such that sum of first k primes divides product of first k primes.

Original entry on oeis.org

1, 3, 8, 13, 23, 38, 39, 41, 43, 48, 50, 53, 56, 57, 58, 66, 68, 70, 73, 77, 84, 90, 94, 98, 126, 128, 134, 140, 143, 145, 149, 151, 153, 157, 160, 164, 167, 168, 172, 174, 176, 182, 191, 194, 196, 200, 210, 212, 215, 217, 218, 219, 222, 225, 228, 229
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 12 1999

Keywords

Examples

			Sum of first 8 primes is 77 and product of first 8 primes is 9699690. 77 divides 9699690 therefore a(3)=8.
		

Crossrefs

A116536 gives the quotients, A140763 the divisors and A159578 the dividends.

Programs

  • GAP
    P:=Filtered([1..2000],IsPrime);;
    Filtered([1..Length(P)],n->Product([1..n],i->P[i]) mod Sum([1..n],i->P[i])=0); # Muniru A Asiru, Dec 20 2018
  • Haskell
    import Data.List (elemIndices)
    a051838 n = a051838_list !! (n-1)
    a051838_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod a002110_list a007504_list
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Mathematica
    p = Prime@ Range@ 250; Flatten@ Position[ Mod[ First@#, Last@#] & /@ Partition[ Riffle[ Rest[ FoldList[ Times, 1, p]], Accumulate@ p], 2], 0] (* Harvey P. Dale, Dec 19 2010 *)
  • PARI
    for(n=1,100,P=prod(i=1,n,prime(i));S=sum(i=1,n,prime(i));if(!(P%S),print1(n,", "))) \\ Derek Orr, Jul 19 2015
    
  • PARI
    isok(n) = my(p = primes(n)); (vecprod(p) % vecsum(p)) == 0; \\ Michel Marcus, Dec 20 2018
    

Formula

From Reinhard Zumkeller, Oct 03 2011: (Start)
A002110(a(n)) mod A007504(a(n)) = 0.
A116536(n) = A002110(a(n)) / A007504(a(n)). (End)

A116536 Numbers that can be expressed as the ratio of the product and the sum of consecutive prime numbers starting from 2.

Original entry on oeis.org

1, 3, 125970, 1278362451795, 305565807424800745258151050335, 2099072522743338791053378243660769678400212601239922213271230, 330455532167461882998265688366895823334392289157931734871641555
Offset: 1

Views

Author

Keywords

Comments

Let prime(i) denote the i-th prime (A000040). Let F(m) = (Product_{i=1..m} prime(i)) / (Sum_{i=1..m} prime(i)). Sequence gives integer values of F(m) and A051838 gives corresponding values of m. - N. J. A. Sloane, Oct 01 2011

Examples

			a(1) = 1 because 2/2 = 1.
a(2) = 3 because (2*3*5)/(2+3+5) = 30/10 = 3.
a(3) = 125970 because (2*3*5*7*11*13*17*19)/(2+3+5+7+11+13+17+19) = 9699690/77 = 125790.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.

Crossrefs

Programs

  • Haskell
    import Data.Maybe (catMaybes)
    a116536 n = a116536_list !! (n-1)
    a116536_list = catMaybes $ zipWith div' a002110_list a007504_list where
       div' x y | m == 0    = Just x'
                | otherwise = Nothing where (x',m) = divMod x y
    -- Reinhard Zumkeller, Oct 03 2011
  • Magma
    [p/s: n in [1..40] | IsDivisibleBy(p,s) where p is &*[NthPrime(i): i in [1..n]] where s is &+[NthPrime(i): i in [1..n]]];  // Bruno Berselli, Sep 30 2011
    
  • Maple
    P:=proc(n) local i,j, pp,sp; pp:=1; sp:=0; for i from 1 by 1 to n do pp:=pp*ithprime(i); sp:=sp+ithprime(i); j:=pp/sp; if j=trunc(j) then print(j); fi; od; end: P(100);
  • Mathematica
    seq = {}; sum = 0; prod = 1; p = 1; Do[p = NextPrime[p]; prod *= p; sum += p; If[Divisible[prod, sum], AppendTo[seq, prod/sum]], {50}]; seq (* Amiram Eldar, Nov 02 2020 *)

Formula

a(n) = A002110(A051838(n)) / A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
a(n) = A159578(n)/A001414(A159578(n)). - Amiram Eldar, Nov 02 2020

A141092 Product of first k composite numbers divided by their sum, when the result is an integer.

Original entry on oeis.org

1, 64, 46080, 111974400, 662171811840, 310393036800000, 7230916185292800, 108238138194410864640000, 23835710455777670400935290994688000000000, 1104077556971139123493322971152384000000000
Offset: 1

Views

Author

Enoch Haga, Jun 01 2008

Keywords

Comments

Find the products and sums of first k composites, k = 1, 2, 3, .... When the products divided by the sums produce integral quotients, add terms to sequence.

Examples

			a(3)=46080 because 4*6*8*9*10*12*14=2903040 and 4+6+8+9+10+12+14=63; 2903040/63=46080, which is an integer, so 46080 is a term.
		

Crossrefs

Programs

  • Haskell
    import Data.Maybe (catMaybes)
    a141092 n = a141092_list !! (n-1)
    a141092_list = catMaybes $ zipWith div' a036691_list a053767_list where
       div' x y | m == 0    = Just x'
                | otherwise = Nothing where (x',m) = divMod x y
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Mathematica
    With[{cnos=Select[Range[50],CompositeQ]},Select[Table[Fold[ Times,1,Take[ cnos,n]]/ Total[Take[cnos,n]],{n,Length[cnos]}],IntegerQ]] (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    s=0;p=1;forcomposite(n=4,100,p*=n;s+=n;if(p%s==0,print1(p/s", "))) \\ Charles R Greathouse IV, Apr 04 2013

Formula

a(n) = A036691(A196415(n)) / A053767(A196415(n)). [Reinhard Zumkeller, Oct 03 2011]

Extensions

Checked by N. J. A. Sloane, Oct 02 2011.

A140763 A051838 gives numbers m such that the sum of first m primes divides the product of the first m primes. This sequence gives corresponding values of the sum of first m primes.

Original entry on oeis.org

2, 10, 77, 238, 874, 2747, 2914, 3266, 3638, 4661, 5117, 5830, 6601, 6870, 7141, 9523, 10191, 10887, 11966, 13490, 16401, 19113, 21037, 23069, 40313, 41741, 46191, 50887, 53342, 54998, 58406, 60146, 61910, 65534, 68341, 72179, 75130, 76127, 80189, 82253
Offset: 1

Views

Author

Enoch Haga, May 28 2008

Keywords

Comments

Sums (divisors) associated with A140761.

Examples

			a(2)=10 because when 30 is divided by 10, the quotient is 3 and integral.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=200,s,p},s=Accumulate[Prime[Range[nn]]];p=FoldList[ Times,Prime[ Range[nn]]];Select[Thread[{p,s}],Divisible[#[[1]],#[[2]]]&]][[All,2]] (* Harvey P. Dale, Jun 07 2022 *)

Formula

a(n)=A116536(n)/A159578(n) = A007504(A051838(n)). - R. J. Mathar, Jun 09 2008
Sum_{i=1..A051838(n)} prime(i).

Extensions

Corrected and edited by N. J. A. Sloane, Oct 01 2011

A140761 Primes p(j) = A000040(j), j>=1, such that p(1)*p(2)*...*p(j) is an integral multiple of p(1)+p(2)+...+p(j).

Original entry on oeis.org

2, 5, 19, 41, 83, 163, 167, 179, 191, 223, 229, 241, 263, 269, 271, 317, 337, 349, 367, 389, 433, 463, 491, 521, 701, 719, 757, 809, 823, 829, 859, 877, 883, 919, 941, 971, 991, 997, 1021, 1033, 1049, 1091, 1153, 1181, 1193, 1223, 1291, 1301, 1319, 1327, 1361
Offset: 1

Views

Author

Enoch Haga, May 28 2008

Keywords

Examples

			a(2) = 5 because it is the last consecutive prime in the run 2*3*5 = 30 and 2+3+5 = 10; since 30/10 = 3, it is the first integral quotient.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; sum = 0; prod = 1; p = 1; Do[p = NextPrime[p]; prod *= p; sum += p; If[Divisible[prod, sum], AppendTo[seq, p]], {200}]; seq (* Amiram Eldar, Nov 02 2020 *)

Formula

Find integral quotients of products of consecutive primes divided by their sum.
a(n) = A000040(A051838(n)). - R. J. Mathar, Jun 09 2008

Extensions

Edited by R. J. Mathar, Jun 09 2008
a(1) added by Amiram Eldar, Nov 02 2020

A141090 Integral quotients of products of first k consecutive composites divided by their sums: products (dividends).

Original entry on oeis.org

4, 1728, 2903040, 12541132800, 115880067072000, 69528040243200000, 1807729046323200000, 43295255277764345856000000, 20188846756043686829592191472500736000000000, 989253491046140654650017382152536064000000000
Offset: 1

Views

Author

Enoch Haga, Jun 01 2008

Keywords

Comments

Based on A141092.
Take the first k composite numbers. If their product divided by their sum results in an integer, their product is a term of the sequence. - Harvey P. Dale, Apr 29 2018

Examples

			a(3) = 2903040 because 4*6*8*9*10*12*14 = 2903040 and 4+6+8+9+10+12+14 = 63; 2903040/63 = 46080, integral -- 2903040 is added to the sequence.
		

Crossrefs

Programs

  • Mathematica
    With[{c=Select[Range[100],CompositeQ]},Table[If[IntegerQ[ Times@@Take[ c,n]/Total[ Take[ c,n]]], Times@@ Take[ c,n],0],{n,Length[c]}]]/.(0-> Nothing) (* Harvey P. Dale, Apr 29 2018 *)

Formula

Find the products and sums of first k consecutive composites. When the product divided by the sum produces an integral quotient, add product to sequence.

Extensions

Checked by N. J. A. Sloane, Oct 02 2011
Edited by N. J. A. Sloane, Apr 29 2018

A141091 Integral quotients of products of consecutive composites divided by their sums: sums (divisors).

Original entry on oeis.org

4, 27, 63, 112, 175, 224, 250, 400, 847, 896, 2368, 2448, 2695, 3596, 4300, 4624, 4961, 5076, 5546, 6032, 6156, 6664, 8750, 9048, 9200, 9976, 10295, 11620, 12312, 13572, 14697, 15872, 16275, 18139, 18352, 23572, 24304, 25544, 26814, 27072, 29986
Offset: 1

Views

Author

Enoch Haga, Jun 01 2008

Keywords

Examples

			a(3) = 63 because 4*6*8*9*10*12*14 = 2903040 and 4+6+8+9+10+12+14 = 63; 2903040/63 = 46080, integral -- 63 is added to the sequence.
		

Crossrefs

Programs

Formula

Find the products and sums of consecutive composites. When the products divided by the sums produce integral quotients, add terms to sequence.

Extensions

a(37) corrected by Amiram Eldar, Jan 12 2020

A141089 Integral quotients of products of consecutive composites divided by their sums: Last consecutive composite.

Original entry on oeis.org

4, 9, 14, 18, 22, 25, 26, 33, 48, 49, 78, 80, 84, 95, 105, 110, 114, 115, 119, 123, 124, 129, 147, 150, 152, 158, 160, 170, 175, 184, 190, 200, 202, 212, 213, 242, 245, 250, 256, 258, 272, 284, 287, 288, 291, 306, 309, 314, 319, 327, 332, 333, 336, 342, 343
Offset: 1

Views

Author

Enoch Haga, Jun 01 2008

Keywords

Examples

			a(3) = 14 because 4*6*8*9*10*12*14 = 2903040 and 4+6+8+9+10+12+14 = 63; 2903040/63 = 46080, integral -- 14 is added to the sequence.
		

Crossrefs

Programs

Formula

Find the products and sums of consecutive composites. When the products divided by the sums produce integral quotients, add terms to sequence.

A159580 Integral quotients occur consecutively this many times (in sequence associated with A051838 and A116536).

Original entry on oeis.org

2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 4, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2
Offset: 1

Views

Author

Enoch Haga, Apr 16 2009

Keywords

Examples

			a(1)=2 because the 1st subsequence (38,39) of consecutive integers has run length 2.
a(2)=3 because the 2nd subsequence is (56,57,58) which has run length 3.
a(3)=2 because the 3rd subsequence is (167,168) which has run length 2.
		

Crossrefs

Extensions

Recomputed based on b-file of A051838. - R. J. Mathar, Aug 28 2018
Showing 1-10 of 13 results. Next