cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A036691 Compositorial numbers: product of first n composite numbers.

Original entry on oeis.org

1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000
Offset: 0

Views

Author

Keywords

Comments

a(A196415(n)) = A141092(n) * A053767(A196415(n)). - Reinhard Zumkeller, Oct 03 2011
For n>11, A000142(n) < a(n) < A002110(n). - Chayim Lowen, Aug 18 2015
For n = {2,3,4}, a(n) is testably a Zumkeller number (A083207). For n > 4, a(n) is of the form 2^e_1 * p_2^e_2 * … * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) < e_1. Therefore, 2^e * p_m^e_m is primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number. Therefore, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m is a Zumkeller number. Therefore, for n > 1, a(n) is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 04 2020

Examples

			a(3) = c(1)*c(2)*c(3) = 4*6*8 = 192.
		

Crossrefs

Cf. primorial numbers A002110. Distinct members of A049614. See also A049650, A060880.
Cf. A092435 (subsequence: A092435(n) = a(prime(n)-n-1)). - Chayim Lowen, Jul 23 2015

Programs

  • Haskell
    a036691_list = scanl1 (*) a002808_list -- Reinhard Zumkeller, Oct 03 2011
    
  • Maple
    A036691 := proc(n)
            mul(A002808(i),i=1..n) ;
    end proc: # R. J. Mathar, Oct 03 2011
  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Table[ Product[ Composite[i], {i, 1, n}], {n, 0, 18}] (* Robert G. Wilson v, Sep 13 2003 *)
    nn=50;cnos=Complement[Range[nn],Prime[Range[PrimePi[nn]]]];Rest[FoldList[ Times,1,cnos]] (* Harvey P. Dale, May 19 2011 *)
    A036691 = Union[Table[n!/(Times@@Prime[Range[PrimePi[n]]]), {n, 29}]] (* Alonso del Arte, Sep 21 2011 *)
    Join[{1},FoldList[Times,Select[Range[30],CompositeQ]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 14 2019 *)
  • PARI
    a(n)=my(c,p);c=4;p=1;while(n>0,if(!isprime(c),p=p*c;n=n-1);c=c+1);p \\ Ralf Stephan, Dec 21 2013
    
  • Python
    from sympy import factorial, primepi, primorial, composite
    def A036691(n):
        return factorial(composite(n))//primorial(primepi(composite(n))) if n > 0 else 1 # Chai Wah Wu, Sep 08 2020

Formula

From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
a(n) = Product_{k=1..A002808(n)-n-1} prime(k)^(A085604(A002808(n),k)-1).
Sum_{k >= 1} 1/a(k) = 1.2975167655550616507663335821769... is to this sequence as e is to the factorials. (End)

Extensions

Corrected and extended by Niklas Eriksen (f95-ner(AT)nada.kth.se) and N. J. A. Sloane

A053767 Sum of first n composite numbers.

Original entry on oeis.org

0, 4, 10, 18, 27, 37, 49, 63, 78, 94, 112, 132, 153, 175, 199, 224, 250, 277, 305, 335, 367, 400, 434, 469, 505, 543, 582, 622, 664, 708, 753, 799, 847, 896, 946, 997, 1049, 1103, 1158, 1214, 1271, 1329, 1389, 1451, 1514, 1578, 1643, 1709, 1777, 1846, 1916, 1988
Offset: 0

Views

Author

G. L. Honaker, Jr., Mar 29 2000

Keywords

Comments

a(A196415(n)) = A036691(A196415(n)) / A141092(n). - Reinhard Zumkeller, Oct 03 2011

Crossrefs

First differences of A023539.

Programs

  • Haskell
    a053767 n = a053767_list !! (n-1)
    a053767_list = scanl1 (+) a002808_list -- Reinhard Zumkeller, Oct 03 2011
    
  • Maple
    A053767 := proc(n)
            add(A002808(i),i=1..n) ;
    end proc: # R. J. Mathar, Oct 03 2011
    ListTools[PartialSums](remove(isprime,[$2..1000])); # Robert Israel, Jan 09 2015
  • Mathematica
    lst={};s=0;Do[If[ !PrimeQ[n], s=s+n;AppendTo[lst, s]], {n, 2, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Complement[Range[2,100],Prime[Range[PrimePi[100]]]]] (* Harvey P. Dale, Dec 28 2010 *)
    Accumulate[Select[Range[2, 100], ! PrimeQ[#] &]]
  • PARI
    lista(nn) = {my(s=0); forcomposite(n=0, nn, print1(s, ", "); s += n;);} \\ Michel Marcus, Jan 09 2015

Formula

a(n) = A000217(A002808(n)) - A034387(A002808(n)) - 1 . - Robert Israel, Jan 09 2015
a(n) = A051349(n+1) - 1. - Michel Marcus, Feb 16 2018

Extensions

a(0)=0 prepended by Max Alekseyev, Feb 10 2018

A116536 Numbers that can be expressed as the ratio of the product and the sum of consecutive prime numbers starting from 2.

Original entry on oeis.org

1, 3, 125970, 1278362451795, 305565807424800745258151050335, 2099072522743338791053378243660769678400212601239922213271230, 330455532167461882998265688366895823334392289157931734871641555
Offset: 1

Views

Author

Keywords

Comments

Let prime(i) denote the i-th prime (A000040). Let F(m) = (Product_{i=1..m} prime(i)) / (Sum_{i=1..m} prime(i)). Sequence gives integer values of F(m) and A051838 gives corresponding values of m. - N. J. A. Sloane, Oct 01 2011

Examples

			a(1) = 1 because 2/2 = 1.
a(2) = 3 because (2*3*5)/(2+3+5) = 30/10 = 3.
a(3) = 125970 because (2*3*5*7*11*13*17*19)/(2+3+5+7+11+13+17+19) = 9699690/77 = 125790.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.

Crossrefs

Programs

  • Haskell
    import Data.Maybe (catMaybes)
    a116536 n = a116536_list !! (n-1)
    a116536_list = catMaybes $ zipWith div' a002110_list a007504_list where
       div' x y | m == 0    = Just x'
                | otherwise = Nothing where (x',m) = divMod x y
    -- Reinhard Zumkeller, Oct 03 2011
  • Magma
    [p/s: n in [1..40] | IsDivisibleBy(p,s) where p is &*[NthPrime(i): i in [1..n]] where s is &+[NthPrime(i): i in [1..n]]];  // Bruno Berselli, Sep 30 2011
    
  • Maple
    P:=proc(n) local i,j, pp,sp; pp:=1; sp:=0; for i from 1 by 1 to n do pp:=pp*ithprime(i); sp:=sp+ithprime(i); j:=pp/sp; if j=trunc(j) then print(j); fi; od; end: P(100);
  • Mathematica
    seq = {}; sum = 0; prod = 1; p = 1; Do[p = NextPrime[p]; prod *= p; sum += p; If[Divisible[prod, sum], AppendTo[seq, prod/sum]], {50}]; seq (* Amiram Eldar, Nov 02 2020 *)

Formula

a(n) = A002110(A051838(n)) / A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
a(n) = A159578(n)/A001414(A159578(n)). - Amiram Eldar, Nov 02 2020

A196415 Values of n such that (product of first n composite numbers) / (sum of first n composite numbers) is an integer.

Original entry on oeis.org

1, 4, 7, 10, 13, 15, 16, 21, 32, 33, 56, 57, 60, 70, 77, 80, 83, 84, 88, 92, 93, 97, 112, 114, 115, 120, 122, 130, 134, 141, 147, 153, 155, 164, 165, 188, 191, 196, 201, 202, 213, 222, 225, 226, 229, 243, 245, 248, 252, 260, 264, 265, 268, 273, 274, 281
Offset: 1

Views

Author

N. J. A. Sloane, Oct 02 2011

Keywords

Comments

A036691(a(n)) mod A053767(a(n)) = 0, A141092(n) = A036691(a(n)) / A053767(a(n)). [Reinhard Zumkeller, Oct 03 2011]

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a196415 n = a196415_list !! (n-1)
    a196415_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod a036691_list a053767_list
    -- Reinhard Zumkeller, Oct 03 2011
  • Maple
    # First define list of composite numbers:
    tc:=[4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,
    28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49,
    50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,
    70,72,74,75,76,77,78,80,81,82,84,85,86,87,88];
    a1:=n->mul(tc[i],i=1..n);
    a2:=n->add(tc[i],i=1..n);
    sn:=[];
    s0:=[];
    s1:=[];
    s2:=[];
    for n from 1 to 40 do
      t1:=a1(n)/a2(n);
      if whattype(t1) = integer then
       sn:= [op(sn),n];
       s0:= [op(s0),t1];
       s1:= [op(s1),a1(n)];
       s2:= [op(s2),a2(n)];
    fi;
    od:
    sn; s0; s1; s2;
    # alternatively
    for n from 1 to 1000 do
            if type(A036691(n)/A053767(n),'integer') then
                    printf("%d,",n);
            end if;
    end do: # R. J. Mathar, Oct 03 2011
  • Mathematica
    c = Select[Range[2,355], ! PrimeQ@# &]; p = 1; s = 0; Select[Range@ Length@c, Mod[p *= c[[#]], s += c[[#]]] == 0 &] (* Giovanni Resta, Apr 03 2013 *)

Extensions

More terms from Arkadiusz Wesolowski, Oct 03 2011

A141090 Integral quotients of products of first k consecutive composites divided by their sums: products (dividends).

Original entry on oeis.org

4, 1728, 2903040, 12541132800, 115880067072000, 69528040243200000, 1807729046323200000, 43295255277764345856000000, 20188846756043686829592191472500736000000000, 989253491046140654650017382152536064000000000
Offset: 1

Views

Author

Enoch Haga, Jun 01 2008

Keywords

Comments

Based on A141092.
Take the first k composite numbers. If their product divided by their sum results in an integer, their product is a term of the sequence. - Harvey P. Dale, Apr 29 2018

Examples

			a(3) = 2903040 because 4*6*8*9*10*12*14 = 2903040 and 4+6+8+9+10+12+14 = 63; 2903040/63 = 46080, integral -- 2903040 is added to the sequence.
		

Crossrefs

Programs

  • Mathematica
    With[{c=Select[Range[100],CompositeQ]},Table[If[IntegerQ[ Times@@Take[ c,n]/Total[ Take[ c,n]]], Times@@ Take[ c,n],0],{n,Length[c]}]]/.(0-> Nothing) (* Harvey P. Dale, Apr 29 2018 *)

Formula

Find the products and sums of first k consecutive composites. When the product divided by the sum produces an integral quotient, add product to sequence.

Extensions

Checked by N. J. A. Sloane, Oct 02 2011
Edited by N. J. A. Sloane, Apr 29 2018

A141091 Integral quotients of products of consecutive composites divided by their sums: sums (divisors).

Original entry on oeis.org

4, 27, 63, 112, 175, 224, 250, 400, 847, 896, 2368, 2448, 2695, 3596, 4300, 4624, 4961, 5076, 5546, 6032, 6156, 6664, 8750, 9048, 9200, 9976, 10295, 11620, 12312, 13572, 14697, 15872, 16275, 18139, 18352, 23572, 24304, 25544, 26814, 27072, 29986
Offset: 1

Views

Author

Enoch Haga, Jun 01 2008

Keywords

Examples

			a(3) = 63 because 4*6*8*9*10*12*14 = 2903040 and 4+6+8+9+10+12+14 = 63; 2903040/63 = 46080, integral -- 63 is added to the sequence.
		

Crossrefs

Programs

Formula

Find the products and sums of consecutive composites. When the products divided by the sums produce integral quotients, add terms to sequence.

Extensions

a(37) corrected by Amiram Eldar, Jan 12 2020

A141089 Integral quotients of products of consecutive composites divided by their sums: Last consecutive composite.

Original entry on oeis.org

4, 9, 14, 18, 22, 25, 26, 33, 48, 49, 78, 80, 84, 95, 105, 110, 114, 115, 119, 123, 124, 129, 147, 150, 152, 158, 160, 170, 175, 184, 190, 200, 202, 212, 213, 242, 245, 250, 256, 258, 272, 284, 287, 288, 291, 306, 309, 314, 319, 327, 332, 333, 336, 342, 343
Offset: 1

Views

Author

Enoch Haga, Jun 01 2008

Keywords

Examples

			a(3) = 14 because 4*6*8*9*10*12*14 = 2903040 and 4+6+8+9+10+12+14 = 63; 2903040/63 = 46080, integral -- 14 is added to the sequence.
		

Crossrefs

Programs

Formula

Find the products and sums of consecutive composites. When the products divided by the sums produce integral quotients, add terms to sequence.

A322608 Values of k such that (product of squarefree numbers <= k) / (sum of squarefree numbers <= k) is an integer.

Original entry on oeis.org

1, 3, 11, 14, 17, 21, 23, 33, 34, 37, 46, 47, 55, 58, 59, 61, 62, 67, 69, 73, 82, 83, 87, 94, 95, 97, 101, 106, 107, 109, 114, 115, 119, 123, 127, 133, 134, 141, 146, 151, 157, 158, 159, 161, 165, 166, 173, 181, 187, 197, 202, 203, 210, 218, 219, 223, 226, 230
Offset: 1

Views

Author

Paolo P. Lava, Dec 20 2018

Keywords

Examples

			3 is in the sequence because (1*2*3)/(1+2+3) = 1.
11 is in the sequence because (1*2*3*5*6*7*10*11)/(1+2+3+5+6+7+10+11) = 138600/45 = 3080.
		

Crossrefs

Cf. A005117, A051838, A111059, A116536, A141092, A173143, A322607 (values of the quotient), A347690 (numbers of terms in the numerators).

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,n; a:=1; b:=0; c:=[];
    for n from 1 to q do if issqrfree(n) then a:=a*n; b:=b+n;
    if frac(a/b)=0 then c:=[op(c),n];
    fi; fi; od; op(c); end: P(60);
  • Mathematica
    seq = {}; sum = 0; prod = 1; Do[If[SquareFreeQ[n], sum += n; prod *= n; If[Divisible[prod, sum], AppendTo[seq, n]]], {n, 1, 230}]; seq (* Amiram Eldar, Mar 05 2021 *)

Extensions

Definition corrected by N. J. A. Sloane, Sep 19 2021 at the suggestion of Harvey P. Dale.

A227249 Number of consecutive composites beginning with the first, to be added to obtain a power.

Original entry on oeis.org

1, 4, 6, 21, 80, 4151, 6982, 269563, 779693, 834365, 16176645, 19770092, 41049539, 228612936, 1950787140, 2404785364, 3095996836, 5236785750
Offset: 1

Views

Author

Robin Garcia, Jul 04 2013

Keywords

Comments

All powers are squares with the exception of 3^3 for a(2) and 6^9 for a(6). I conjecture these are the only nonsquare powers.
a(19) > 10^10. - Zak Seidov, Jul 06 2013

Examples

			Considering 1 not to be prime and not to be composite, first composite is 4 which is 2^2. And the sum of the first four composites is 4 + 6 + 8 + 9 = 27 = 3^3.
		

Crossrefs

Programs

  • Maple
    # see A001597 for isA001597
    for n from 1 do
        if isA001597(A053767(n) ) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Jul 08 2013
  • PARI
    n=10^7;v=vector(n);i=0;for(a=2,n,if(isprime(a),next,i++;v[i]=a));k=0;for(j=1,i,k=k+v[j];if(ispower(k,,&n),print1([k,n,j]," ")))

Formula

{n: A053767(n) in A001597}. - Zak Seidov, Jul 06 2013

Extensions

a(11) - a(18) from Zak Seidov, Jul 06 2013

A322607 Numbers that can be expressed as the ratio between the product and the sum of consecutive squarefree numbers starting from 1.

Original entry on oeis.org

1, 3080, 350350, 61850250, 17823180375, 6871260396000, 88909822914869880000, 2746644314348614680000, 2980109081068246927800000, 9638057975990853416623724908800000, 424217819372970387341691005411520000, 51912228216508515627667235880347808000000, 152157812632066726080765311397008321568000000
Offset: 1

Views

Author

Paolo P. Lava, Dec 20 2018

Keywords

Examples

			1 is a term because 1/1 = (1*2*3)/(1+2+3) = 1.
3080 is a term because (1*2*3*5*6*7*10*11)/(1+2+3+5+6+7+10+11) = 138600/45 = 3080.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,n; a:=1; b:=0; c:=[];
    for n from 1 to q do if issqrfree(n) then a:=a*n; b:=b+n;
    if frac(a/b)=0 then if n>1 then c:=[op(c),a/b];
    fi; fi; fi; od; op(c); end: P(60);

Formula

a(n) = A111059(A322608(n+1))/A173143(A322608(n+1)).
Showing 1-10 of 13 results. Next