cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A159993 Denominator of Sum_{k=0..n} A159990(k)/A159991(k), numerator=A159992.

Original entry on oeis.org

1, 30, 3600, 36000, 4320000, 24300000, 23328000000, 93312000000, 3359232000000, 223948800000000, 604661760000000000, 36279705600000000000, 544195584000000000000, 1360488960000000000000, 326517350400000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Crossrefs

A159991, subsequence of A051037, the 5-smooth numbers.

A159992 Numerator of Sum_{k=0..n} A159990(k)/A159991(k).

Original entry on oeis.org

1, 41, 4927, 49277, 5913251, 33262037, 31931555539, 127726222157, 4598143997653, 306542933176867, 827665919577540943, 49659955174652456593, 744899327619786848909, 1862248319049467122273, 446939596571872109345521
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Comments

a(n)/A159993(n) approximates the positive root of x^3+2*x^2+10*x=20:
A159994(n)/A159995(n) = f(a(n)/A159993(n)) --> 0, where f(x) = x^3 + 2*x^2 + 10*x - 20;
a(n)/A159993(n) = a(n-1)/A159993(n-1) + A159990(n)/A159991(n).
Limit can be found at A202300. - Jason Bard, Jul 26 2025

Examples

			a(0)/A159993(0) = 1;
a(1)/A159993(1) = 41/30;
a(2)/A159993(2) = 4927/3600;
a(3)/A159993(3) = 49277/36000;
a(4)/A159993(4) = 5913251/4320000;
a(5)/A159993(5) = 33262037/24300000;
a(6)/A159993(6) = 31931555539/23328000000;
a(7)/A159993(7) = 127726222157/93312000000;
a(8)/A159993(8) = 4598143997653/3359232000000;
and written as decimal fractions:
a(0)/A159993(0) = 1;
a(1)/A159993(1) ~= 1.3666666666666667;
a(2)/A159993(2) ~= 1.3686111111111111;
a(3)/A159993(3) ~= 1.3688055555555556;
a(4)/A159993(4) ~= 1.3688081018518519;
a(5)/A159993(5) ~= 1.3688081069958847;
a(6)/A159993(6) ~= 1.3688081078103566;
a(7)/A159993(7) ~= 1.3688081078210733;
a(8)/A159993(8) ~= 1.3688081078213710.
		

Crossrefs

Cf. A159990, A159991, A159993 (denominator), A159994, A159995, A202300.

A159991 Powers of 60: a(n) = 60^n.

Original entry on oeis.org

1, 60, 3600, 216000, 12960000, 777600000, 46656000000, 2799360000000, 167961600000000, 10077696000000000, 604661760000000000, 36279705600000000000, 2176782336000000000000, 130606940160000000000000, 7836416409600000000000000, 470184984576000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Examples

			G.f. = 1 + 60*x + 3600*x^2 + 216000*x^3 + 12960000*x^4 + 77600000*x^5 + ... - _Michael Somos_, Jan 01 2019
		

Crossrefs

Programs

Formula

a(n) = A000400(n)*A011557(n) = A000351(n)*A001021(n) = A000302(n)*A001024(n) = A000244(n)*A009964(n). (Corrected by Robert B Fowler, Jan 25 2023)
From Muniru A Asiru, Nov 21 2018: (Start)
a(n) = 60^n.
a(n) = 60*a(n-1) for n > 0, a(0) = 1.
G.f.: 1/(1-60*x).
E.g.f: exp(60*x). (End)
a(n) = 1/a(-n) for all n in Z. - Michael Somos, Jan 01 2019

A159994 Numerator of f(A159992(n)/A159993(n)) with f(x)=x^3+2*x^2+10*x-20, denominator=A159995.

Original entry on oeis.org

-7, -1219, -193885217, -2512095067, -10152983807749, -249880575515347, -2950249420928771944181, -5129149052857317896107, -1247467412339070464235923, -16941291362994850503969493637
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Comments

a(n)/A159995(n) = f(A159992(n)/A159993(n));
a(n)/A159995(n) < 0; a(n)/A159995(n) <= a(n+1)/A159995(n+1);
a(n)/A159995(n) --> 0.

Examples

			a(0)/A159995(0)=-7;
a(1)/A159995(1)=-1216/27000;
a(2)/A159995(2)=-193885217/46656000000;
a(3)/A159995(3)=-2512095067/46656000000000;
a(4)/A159995(4)=-10152983807749/80621568000000000000;
a(5)/A159995(5)=-249880575515347/14348907000000000000000;
a(6)/A159995(6)=-2950249420928771944181/12694994583552000000000000000000;
a(7)/A159995(7)=-5129149052857317896107/812479653347328000000000000000000;
a(8)/A159995(8)=-1247467412339070464235923/37907050706572935168000000000000000000;
written as decimal fractions:
a(1)/A159995(1) ~= -0.045037037037037037037037;
a(2)/A159995(2) ~= -0.004155633080418381344307;
a(3)/A159995(3) ~= -0.000053842915530692729766;
a(4)/A159995(4) ~= -0.000000125933842017920068;
a(5)/A159995(5) ~= -0.000000017414606946392990;
a(6)/A159995(6) ~= -0.000000000232394697099847;
a(7)/A159995(7) ~= -0.000000000006312956923568;
a(8)/A159995(8) ~= -0.000000000000032908585318.
		

Crossrefs

A202300 Decimal expansion of the real root of x^3 + 2x^2 + 10x - 20.

Original entry on oeis.org

1, 3, 6, 8, 8, 0, 8, 1, 0, 7, 8, 2, 1, 3, 7, 2, 6, 3, 5, 2, 2, 7, 4, 1, 4, 3, 3, 0, 0, 2, 1, 3, 2, 5, 5, 3, 9, 5, 4, 2, 4, 3, 5, 5, 4, 1, 4, 8, 7, 5, 3, 6, 5, 3, 0, 7, 9, 3, 7, 1, 2, 6, 9, 0, 2, 1, 8, 2, 6, 3, 1, 4, 7, 4, 1, 9, 6, 8, 8, 3, 8, 1, 9, 6, 9, 3, 9, 8, 8, 9
Offset: 1

Views

Author

Keywords

Comments

There is a small typo in Posamentier & Lehmann (2007): this number is given as approximately 1.3688081075 rather than 1.3688081078, a mistake that can't be justified by rounding rather than truncating nor a loss of machine precision. - Alonso del Arte, Mar 24 2012
Perhaps the reason for the mistake is that the authors got the correct answer mixed up with Fibonacci's answer, which, though wrong, was very good for the time: 1 + 22/60 + 7/60^2 + 42/60^3 + 33/60^4 + 4/60^5 + 40/60^6 = 1.36880810785322... But apparently they truncated at the first 5 and left out the 8 before that 5. - Alonso del Arte, Jun 09 2014
The complex roots are -1.68440405391... +- 3.43133135... * i. - Alonso del Arte, Jun 21 2014
Fibonacci calculated this constant to six sexagesimal digits and proved that it was neither rational nor a square root of a rational. - Charles R Greathouse IV, Oct 21 2022

Examples

			x = 1.36880810782137263522741433002132553954243554148753653...
		

References

  • John Derbyshire, Unknown Quantity: A Real and Imaginary History of Algebra. Washington, DC: Joseph Henry Press (2006): 69-70.
  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 63-64.
  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007) p. 21.

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^3 + 2x^2 + 10x - 20 == 0, {x, 1.4}, WorkingPrecision -> 120]][[1]] (* Harvey P. Dale, Feb 27 2013 *)
  • PARI
    real(polroots(x^3+2*x^2+10*x-20)[1])
    
  • PARI
    polrootsreal(x^3+2*x^2+10*x-20)[1] \\ Charles R Greathouse IV, Jan 05 2016

Formula

x = (2*sqrt(3930)/9 - 352/27)^(1/3) + (2*sqrt(3930)/9 + 352/27)^(1/3) - 2/3;
x = (1/3)*(-2 - 13 * 2^(2/3)/(176 + 3*sqrt(3930))^(1/3) + (2*(176 + 3*sqrt(3930)))^(1/3)).
The first formula comes from Posamentier & Lehmann (2007), the second from Wolfram|Alpha. - Alonso del Arte, Mar 24 2012

A243629 Fibonacci's solution to x^3 + 2x^2 + 10x = 20.

Original entry on oeis.org

1, 22, 7, 42, 33, 4, 40
Offset: 0

Views

Author

Jason Chabora, Jun 10 2014

Keywords

Comments

Fibonacci attempted to solve x^3 + 2x^2 + 10x = 20 and managed to approximate an answer in base 60 with this sequence without a calculator or computer, but he gave a(6) as 40 instead of the correct answer of 38 (see A159990). Unfortunately, Fibonacci did not explain how he calculated this sequence, so it is not possible to explore the precision to a greater degree.

Examples

			x = 1 + 22/60 + 7/60^2 + 42/60^3 + 33/60^4 + 4/60^5 + 40/60^6. Then x^3 + 2x^2 + 10x = 20.0000000006719323...
		

References

  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007): 21.

Crossrefs

Cf. A159990 shows the sequence corrected.

A244467 Decimal expansion of 1 + 22/60 + 7/60^2 + 42/60^3 + 33/60^4 + 4/60^5 + 40/60^6, Fibonacci's solution to x^3 + 2x^2 + 10x = 20.

Original entry on oeis.org

1, 3, 6, 8, 8, 0, 8, 1, 0, 7, 8, 5, 3, 2, 2, 3, 5, 9, 3, 9, 6, 4, 3, 3, 4, 7, 0, 5, 0, 7, 5, 4, 4, 5, 8, 1, 6, 1, 8, 6, 5, 5, 6, 9, 2, 7, 2, 9, 7, 6, 6, 8, 0, 3, 8, 4, 0, 8, 7, 7, 9, 1, 4, 9, 5, 1, 9, 8, 9, 0, 2, 6, 0, 6, 3, 1, 0, 0, 1, 3, 7, 1, 7, 4, 2, 1, 1, 2, 4, 8, 2, 8, 5, 3, 2, 2
Offset: 1

Views

Author

Alonso del Arte, Jun 28 2014

Keywords

Comments

The equation has no rational solutions. Despite Fibonacci's mistake with the sixth coefficient (40 rather than 38), his solution is a remarkable achievement for the time. Plugged into the equation, it gives 20.0000000006719323...

Examples

			= 1.36880810785322...
		

References

  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007): 21.

Crossrefs

Programs

  • Mathematica
    RealDigits[1596577777/1166400000, 10, 100][[1]]

Formula

1 + 22/60 + 7/60^2 + 42/60^3 + 33/60^4 + 4/60^5 + 40/60^6 = 1596577777/1166400000.
Showing 1-7 of 7 results.