Original entry on oeis.org
1, 30, 3600, 36000, 4320000, 24300000, 23328000000, 93312000000, 3359232000000, 223948800000000, 604661760000000000, 36279705600000000000, 544195584000000000000, 1360488960000000000000, 326517350400000000000000
Offset: 0
Original entry on oeis.org
1, 41, 4927, 49277, 5913251, 33262037, 31931555539, 127726222157, 4598143997653, 306542933176867, 827665919577540943, 49659955174652456593, 744899327619786848909, 1862248319049467122273, 446939596571872109345521
Offset: 0
a(0)/A159993(0) = 1;
a(1)/A159993(1) = 41/30;
a(2)/A159993(2) = 4927/3600;
a(3)/A159993(3) = 49277/36000;
a(4)/A159993(4) = 5913251/4320000;
a(5)/A159993(5) = 33262037/24300000;
a(6)/A159993(6) = 31931555539/23328000000;
a(7)/A159993(7) = 127726222157/93312000000;
a(8)/A159993(8) = 4598143997653/3359232000000;
and written as decimal fractions:
a(0)/A159993(0) = 1;
a(1)/A159993(1) ~= 1.3666666666666667;
a(2)/A159993(2) ~= 1.3686111111111111;
a(3)/A159993(3) ~= 1.3688055555555556;
a(4)/A159993(4) ~= 1.3688081018518519;
a(5)/A159993(5) ~= 1.3688081069958847;
a(6)/A159993(6) ~= 1.3688081078103566;
a(7)/A159993(7) ~= 1.3688081078210733;
a(8)/A159993(8) ~= 1.3688081078213710.
A000244
Powers of 3: a(n) = 3^n.
Original entry on oeis.org
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 0
G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2187*x^7 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- T. Banchoff, Counting the Faces of Higher-Dimensional Cubes, Beyond the Third Dimension: Geometry, computer graphics and higher dimensions, Scientific American Library, 1996.
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 7
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 268
- Milan Janjic, Enumerative Formulae for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Hanoi Graph.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Ladder Rung Graph.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Doron Zeilberger, The Amazing 3^n Theorem and its even more Amazing Proof [Discovered by Xavier G. Viennot and his École Bordelaise gang], arXiv:1208.2258, 2012.
- Index entries for "core" sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (3).
- Index entries for sequences related to Benford's law
Cf.
A008776 (2*a(n), and first differences).
The following are parallel families:
A000079 (2^n),
A004094 (2^n reversed),
A028909 (2^n sorted up),
A028910 (2^n sorted down),
A036447 (double and reverse),
A057615 (double and sort up),
A263451 (double and sort down);
A000244 (3^n),
A004167 (3^n reversed),
A321540 (3^n sorted up),
A321539 (3^n sorted down),
A163632 (triple and reverse),
A321542 (triple and sort up),
A321541 (triple and sort down).
-
a000244 = (3 ^) -- Reinhard Zumkeller, Nov 14 2011
a000244_list = iterate (* 3) 1 -- Reinhard Zumkeller, Apr 04 2012
-
[ 3^n : n in [0..30] ]; // Wesley Ivan Hurt, Jul 04 2014
-
A000244 := n->3^n; [ seq(3^n, n=0..50) ];
A000244:=-1/(-1+3*z); # Simon Plouffe in his 1992 dissertation.
-
Table[3^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
3^Range[0, 30] (* Wesley Ivan Hurt, Jul 04 2014 *)
LinearRecurrence[{3}, {1}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
CoefficientList[Series[1/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
NestList[3#&,1,30] (* Harvey P. Dale, Feb 20 2020 *)
-
makelist(3^n, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
-
A000244(n) = 3^n \\ Michael B. Porter, Nov 03 2009
-
def A000244(n): return 3**n # Chai Wah Wu, Nov 10 2022
-
val powersOf3: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 3)
(0 to 26).map(powersOf3()) // _Alonso del Arte, May 03 2020
A000302
Powers of 4: a(n) = 4^n.
Original entry on oeis.org
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972, eq. (1.93), p. 12.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, eq. (5.39), p. 187.
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- R. Duarte and A. G. de Oliveira, Short note on the convolution of binomial coefficients, arXiv preprint arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See p. 5.
- R. K. Guy, Letter to N. J. A. Sloane
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 8
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 269
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Tanya Khovanova, Recursive Sequences
- Craig Knecht, Number of tilings for a 6 sphinx tile repetitive unit.
- Walter G. Kropatsch, A pyramid that grows by powers of 2, Pattern Recognition Letters, Vol. 3, No. 5 (1985), 315-322 [Subscription required].
- Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Robert Price, Comments on A000302 concerning Elementary Cellular Automata, Feb 26 2016.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9., 2016.
- Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv preprint arXiv:1504.04404 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Barbell Graph
- Eric Weisstein's World of Mathematics, Cantor Dust
- Eric Weisstein's World of Mathematics, Connected Dominating Set
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
- Index entries for "core" sequences
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (4).
- Index entries for sequences related to Benford's law
-
a000302 = (4 ^)
a000302_list = iterate (* 4) 1 -- Reinhard Zumkeller, Apr 04 2012
-
A000302 := n->4^n;
for n from 0 to 10 do sum(2^(n-j)*binomial(n+j,j),j=0..n); od; # Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
A000302:=-1/(-1+4*z); # Simon Plouffe in his 1992 dissertation.
-
Table[4^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
CoefficientList[Series[1/(1 - 4 x), {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2014 *)
NestList[4 # &, 1, 30] (* Harvey P. Dale, Mar 26 2015 *)
4^Range[0, 30] (* Eric W. Weisstein, Jun 29 2017 *)
LinearRecurrence[{4}, {1}, 31] (* Robert A. Russell, Nov 08 2018 *)
-
A000302(n):=4^n$ makelist(A000302(n),n,0,30); /* Martin Ettl, Oct 24 2012 */
-
A000302(n)=4^n \\ Michael B. Porter, Nov 06 2009
-
print([4**n for n in range(25)]) # Michael S. Branicky, Jan 04 2021
-
is_A000302 = lambda n: n.bit_count()==1 and n.bit_length()&1 # M. F. Hasler, Nov 25 2024
-
[4**n for n in range(0,25)] # Stefano Spezia, Jul 23 2025
-
(List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jun 22 2019
A011557
Powers of 10: a(n) = 10^n.
Original entry on oeis.org
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000
Offset: 0
- Philip Morrison et al., Powers of Ten, Scientific American Press, 1982 and later editions.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Kees Boeke, Cosmic View: The Universe in 40 Jumps (1957) [The original "powers of ten" book]
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Charles and Ray Eames, Powers of Ten
- Tanya Khovanova, Recursive Sequences
- Robert Price, Comments on A011557 concerning Elementary Cellular Automata, Feb 21 2016
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Science, Optics and You, Secret Worlds: The Universe Within [Powers of Ten]
- Eric Weisstein's World of Mathematics, 10
- Eric Weisstein's World of Mathematics, Digitaddition
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Wikipedia, Powers of Ten
- S. Wolfram, A New Kind of Science
- Index entries for linear recurrences with constant coefficients, signature (10).
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
- Index entries for sequences related to Benford's law
Cf.
A178501: this sequence with 0 prefixed.
-
a011557 = (10 ^)
a011557_list = iterate (* 10) 1
-- Reinhard Zumkeller, Jul 05 2013, Feb 05 2012
-
A011557:=n->10^n; seq(A011557(n), n=0..40); # Wesley Ivan Hurt, Jan 17 2014
-
Table[10^n,{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
10^Range[0,20] (* Harvey P. Dale, Sep 17 2023 *)
-
A011557(n):=10^n$ makelist(A011557(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=10^n \\ Charles R Greathouse IV, Jun 15 2011
-
print([10**n for n in range(19)]) # Michael S. Branicky, Jan 10 2021
Links to "Powers of Ten" books and videos added by
N. J. A. Sloane, Nov 07 2009
A000351
Powers of 5: a(n) = 5^n.
Original entry on oeis.org
1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125, 6103515625, 30517578125, 152587890625, 762939453125, 3814697265625, 19073486328125, 95367431640625, 476837158203125, 2384185791015625, 11920928955078125
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..100
- O. M. Cain, The Exceptional Selfcondensability of Powers of Five, arXiv:1910.13829 [math.HO], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 270
- IREM Paris-Nord, La pyramide de Sierpinski (in French).
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Box Fractal
- Index entries for linear recurrences with constant coefficients, signature (5).
Sierpinski fractal square-based pyramid:
A020858 (Hausdorff dimension),
A279511 (number of vertices), this sequence (number of pyramids).
-
a000351 = (5 ^)
a000351_list = iterate (* 5) 1 -- Reinhard Zumkeller, Oct 31 2012
-
[5^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016
-
[ seq(5^n,n=0..30) ];
A000351:=-1/(-1+5*z); # Simon Plouffe in his 1992 dissertation
-
Table[5^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 06 2006 *)
5^Range[0, 30] (* Harvey P. Dale, Aug 22 2011 *)
-
makelist(5^n,n,0,20); /* Martin Ettl, Dec 27 2012 */
-
a(n)=5^n \\ Charles R Greathouse IV, Jun 10 2011
-
def a(n): return 5**n
print([a(n) for n in range(24)]) # Michael S. Branicky, Nov 12 2022
-
(List.fill(50)(5: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, May 31 2019
A000400
Powers of 6: a(n) = 6^n.
Original entry on oeis.org
1, 6, 36, 216, 1296, 7776, 46656, 279936, 1679616, 10077696, 60466176, 362797056, 2176782336, 13060694016, 78364164096, 470184984576, 2821109907456, 16926659444736, 101559956668416, 609359740010496, 3656158440062976, 21936950640377856, 131621703842267136
Offset: 0
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 86.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 271
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Pentaflake
- Index entries for linear recurrences with constant coefficients, signature (6).
A001018
Powers of 8: a(n) = 8^n.
Original entry on oeis.org
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696
Offset: 0
For n=1, the 1st order Sierpinski carpet graph is an 8-cycle.
- K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 273
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Caroline Nunn, A Proof of a Generalization of Niven's Theorem Using Algebraic Number Theory, Rose-Hulman Undergraduate Mathematics Journal: Vol. 22, Iss. 2, Article 3 (2021). See table at p. 9.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Sierpiński Carpet
- Index entries for linear recurrences with constant coefficients, signature (8).
Cf.
A000079 (powers of 2),
A000244 (powers of 3),
A000302 (powers of 4),
A000351 (powers of 5),
A000400 (powers of 6),
A000420 (powers of 7),
A001019 (powers of 9), ...,
A001029 (powers of 19),
A009964 (powers of 20), ...,
A009992 (powers of 48),
A087752 (powers of 49),
A165800 (powers of 50),
A159991 (powers of 60).
Cf.
A271939 (number of edges in the n-Sierpinski carpet graph).
-
a001018 = (8 ^)
a001018_list = iterate (* 8) 1 -- Reinhard Zumkeller, Apr 29 2015
-
[8^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016
-
seq(8^n, n=0..23); # Nathaniel Johnston, Jun 26 2011
A001018 := n -> 8^n; # M. F. Hasler, Apr 19 2015
-
Table[8^n, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
-
makelist(8^n,n,0,20); /* Martin Ettl, Nov 12 2012 */
-
a(n)=8^n \\ Charles R Greathouse IV, May 10 2014
-
print([8**n for n in range(25)]) # Michael S. Branicky, Dec 29 2021
Original entry on oeis.org
1, 12, 144, 1728, 20736, 248832, 2985984, 35831808, 429981696, 5159780352, 61917364224, 743008370688, 8916100448256, 106993205379072, 1283918464548864, 15407021574586368, 184884258895036416, 2218611106740436992
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 276.
- Tanya Khovanova, Recursive Sequences.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Index entries for linear recurrences with constant coefficients, signature (12).
Original entry on oeis.org
1, 20, 400, 8000, 160000, 3200000, 64000000, 1280000000, 25600000000, 512000000000, 10240000000000, 204800000000000, 4096000000000000, 81920000000000000, 1638400000000000000, 32768000000000000000
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..100
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Menger Sponge
- Eric Weisstein's World of Mathematics, Menger Sponge Graph
- Eric Weisstein's World of Mathematics, Vertex Count
- Wikipedia, Menger sponge
- Index entries for linear recurrences with constant coefficients, signature (20).
-
List([0..20],n->20^n); # Muniru A Asiru, Nov 21 2018
-
[20^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
-
[20^n$n=0..20]; # Muniru A Asiru, Nov 21 2018
-
20^Range[0, 10] (* or *) LinearRecurrence[{20}, {1}, 20] (* Eric W. Weisstein, Aug 17 2017 *)
-
makelist(20^n,n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=20^n \\ Charles R Greathouse IV, Jun 19 2015
-
powers(20,12) \\ Charles R Greathouse IV, Jun 19 2015
-
[20**n for n in range(21)] # Stefano Spezia, Nov 21 2018
-
[20^n for n in range(21)] # Zerinvary Lajos, Apr 29 2009
Showing 1-10 of 25 results.
Comments