cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A182821 Expansion of g.f.: exp( Sum_{n>=1} sigma(5*n)*x^n/n ).

Original entry on oeis.org

1, 6, 27, 98, 315, 917, 2486, 6345, 15427, 35965, 80897, 176296, 373652, 772381, 1561130, 3091476, 6008896, 11480887, 21591830, 40016045, 73157052, 132052382, 235535752, 415433365, 725043875, 1252857043, 2144601961, 3638413830
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(5*n) = A000203(5*n), the sum of divisors of 5n.
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + ...
log(A(x)) = 6*x + 18*x^2/2 + 24*x^3/3 + 42*x^4/4 + 31*x^5/5 + 72*x^6/6 + 48*x^7/7 + 90*x^8/8 + ... + sigma(5n)*x^n/n + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^k: A035959 (k=1), A160461 (k=2), A277212 (k=5),
this sequence (k=6).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(5*j))/(1 - x^j)^6: j in [1..(m+2)]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(5*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    default(seriesprecision,66); Vec(eta(x^5)/eta(x)^6) \\ Joerg Arndt, Dec 05 2010
    
  • PARI
    m=30; x='x+O('x^m); Vec(prod(j=1,m+2, (1 - x^(5*j))/(1 - x^j)^6)) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(30)
    s = prod((1 - x^(5*j))/(1 - x^j)^6 for j in (1..32))
    list(s) # G. C. Greubel, Nov 18 2018

Formula

G.f.: A(x) = E(x^5)/E(x)^6 where E(x) = Product_{k>=1} (1-x^k). - Joerg Arndt, Dec 05 2010
a(n) ~ 29^(3/2) * exp(sqrt(58*n/15)*Pi) / (2400*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 28 2016
A(x^5) = P(x)*P(a*x)*P(a^2*x)*P(a^3*x)*P(a^4*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n), and where a = exp(2*Pi*i/5) is a primitive fifth root of unity. - Peter Bala, Jan 24 2017

A160460 Coefficients in the expansion of C^6 / B^7, in Watson's notation of page 106.

Original entry on oeis.org

1, 7, 35, 140, 490, 1541, 4480, 12195, 31465, 77525, 183626, 420077, 932030, 2011905, 4237130, 8725671, 17605602, 34861815, 67848095, 129946805, 245203642, 456303872, 838178470, 1520969100, 2728472695, 4841909821, 8504898720, 14794863270, 25500965320
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			x^23 + 7*x^47 + 35*x^71 + 140*x^95 + 490*x^119 + 1541*x^143 + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), this sequence (k=6), A160521 (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^6/(1 - x^k)^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)

Formula

See Maple code in A160458 for formula.
a(n) ~ sqrt(29/15) * exp(Pi*sqrt(58*n/15)) / (500*n). - Vaclav Kotesovec, Nov 28 2016

A278556 Expansion of Product_{n>=1} (1 - x^(5*n))^18/(1 - x^n)^19 in powers of x.

Original entry on oeis.org

1, 19, 209, 1710, 11495, 66862, 347339, 1645875, 7221520, 29668595, 115116233, 424720338, 1498263563, 5076482415, 16583497160, 52399330389, 160586833362, 478482249548, 1388989067820, 3935549005725, 10901608510397, 29565343541110, 78604103339462
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2016

Keywords

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), this sequence (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    CoefficientList[ Series[ Product[(1 - x^(5n))^18/(1 - x^n)^19, {n, 22}], {x, 0, 22}], x] (* Robert G. Wilson v, Nov 24 2016 *)

Formula

G.f.: Product_{n>=1} (1 - x^(5*n))^18/(1 - x^n)^19.
A278559(n) = 5^2*63*A160460(n) + 5^5*52*A278555(n-1) + 5^7*63*a(n-2) + 5^10*6*A278557(n-3) + 5^12*A278558(n-4) for n >= 4.
a(n) ~ sqrt(77/15) * exp(Pi*sqrt(154*n/15)) / (7812500*n). - Vaclav Kotesovec, Nov 28 2016

A160462 Coefficients in the expansion of C^2/B^3, in Watson's notation of page 106.

Original entry on oeis.org

1, 3, 9, 22, 51, 106, 215, 411, 766, 1377, 2423, 4154, 7001, 11567, 18834, 30195, 47809, 74735, 115585, 176847, 268064, 402598, 599695, 886116, 1299808, 1893115, 2739248, 3938491, 5629407, 8000431, 11309295, 15904003, 22256183, 30998479, 42981170, 59337604
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			x^7+3*x^31+9*x^55+22*x^79+51*x^103+106*x^127+215*x^151+...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), this sequence (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^2/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)

Formula

See Maple code in A160458 for formula.
a(n) ~ sqrt(13/15) * exp(Pi*sqrt(26*n/15)) / (20*n). - Vaclav Kotesovec, Nov 28 2016

A160463 Coefficients in the expansion of C^3/B^4, in Watson's notation of page 106.

Original entry on oeis.org

1, 4, 14, 40, 105, 249, 562, 1198, 2460, 4865, 9352, 17486, 31973, 57220, 100550, 173665, 295413, 495339, 819900, 1340655, 2167825, 3468579, 5495908, 8628080, 13428945, 20730689, 31757174, 48293585, 72933885, 109421095, 163135433, 241763735, 356246552
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			x^11+4*x^35+14*x^59+40*x^83+105*x^107+249*x^131+562*x^155+...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), this sequence (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^3/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)

Formula

See Maple code in A160458 for formula.
a(n) ~ sqrt(17/3) * exp(Pi*sqrt(34*n/15)) / (100*n). - Vaclav Kotesovec, Nov 28 2016

A160506 Coefficients in the expansion of C^4/B^5, in Watson's notation of page 106.

Original entry on oeis.org

1, 5, 20, 65, 190, 502, 1245, 2910, 6505, 13965, 29005, 58455, 114810, 220240, 413775, 762635, 1381550, 2463060, 4327445, 7500260, 12836645, 21712470, 36323930, 60143320, 98620425, 160238035, 258110955, 412367705, 653709340, 1028658150, 1607306688
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			x^15+5*x^39+20*x^63+65*x^87+190*x^111+502*x^135+1245*x^159+...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), A160463 (k=3), this sequence (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^4/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)

Formula

See Maple code in A160458 for formula.
a(n) ~ sqrt(7/5) * exp(Pi*sqrt(14*n/5)) / (100*n). - Vaclav Kotesovec, Nov 28 2016

A160521 Coefficients in the expansion of C^7/B^8, in Watson's notation of page 106.

Original entry on oeis.org

1, 8, 44, 192, 726, 2457, 7648, 22220, 60993, 159478, 399906, 966600, 2261630, 5139897, 11378988, 24598683, 52033372, 107890610, 219630050, 439535138, 865784403, 1680352500, 3216454360, 6077280123, 11343018559, 20928404349, 38194869384, 68989715838
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			x^27+8*x^51+44*x^75+192*x^99+726*x^123+2457*x^147+7648*x^171+...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), this sequence (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^7/(1 - x^k)^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)

Formula

See Maple code in A160458 for formula.
a(n) ~ sqrt(11) * exp(Pi*sqrt(22*n/5)) / (2500*n). - Vaclav Kotesovec, Nov 28 2016

A160525 Coefficients in the expansion of C/B^2, in Watson's notation of page 118.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 109, 183, 295, 471, 732, 1129, 1705, 2554, 3769, 5517, 7979, 11458, 16289, 23007, 32227, 44869, 62028, 85284, 116530, 158432, 214228, 288348, 386224, 515156, 684109, 904963, 1192353, 1565383, 2047642, 2669591, 3468797, 4493351, 5802533
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 109*x^7 + ...
G.f. = q^5 + 2*q^29 + 5*q^53 + 10*q^77 + 20*q^101 + 36*q^125 + 65*q^149 + 109*q^173 + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^2: A000041 (k=1), A015128 (k=2), A278690 (k=3), A160461 (k=5), this sequence (k=7).

Programs

  • Maple
    M1:=1200:
    fm:=mul(1-x^n,n=1..M1):
    A:=x^(1/7)*subs(x=x^(24/7),fm):
    B:=x*subs(x=x^24,fm):
    C:=x^7*subs(x=x^168,fm):
    t1:=C/B^2;
    t2:=series(t1,x,M1);
    t3:=subs(x=y^(1/24),t2/x^5);
    t4:=series(t3,y,M1/24);
    t5:=seriestolist(t4); # A160525
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 13 2017 *)

Formula

See Maple code for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^2. - Seiichi Manyama, Nov 06 2016
a(n) ~ sqrt(13/3) * exp(sqrt(26*n/21)*Pi) / (28*n). - Vaclav Kotesovec, Apr 13 2017

A298311 Expansion of Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3).

Original entry on oeis.org

1, 3, 7, 16, 32, 61, 112, 197, 336, 560, 912, 1456, 2287, 3536, 5392, 8123, 12096, 17824, 26016, 37632, 53984, 76848, 108601, 152432, 212592, 294704, 406201, 556864, 759488, 1030784, 1392496, 1872784, 2508048, 3345184, 4444384, 5882747, 7758736, 10197712, 13358944, 17444256, 22708719
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 17 2018

Keywords

Comments

Number of partitions of n where there are 3 kinds of odd parts.
Convolution of the sequences A000009 and A015128.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2 k)) (1 - x^(2 k - 1))^3), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Product[(1 + x^k)^2/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3).
G.f.: Product_{k>=1} (1 + x^k)^2/(1 - x^k).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2^(5/2)*sqrt(3)*n). - Vaclav Kotesovec, Apr 08 2018
G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 4. Cf. A000041 (k = 1), A015128 (k = 2), A278690 (k = 3) and A160461 (k = 5). - Peter Bala, Nov 17 2020

A278690 Expansion of Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^2 in powers of x.

Original entry on oeis.org

1, 2, 5, 9, 18, 31, 54, 88, 144, 225, 351, 531, 800, 1179, 1728, 2492, 3573, 5058, 7119, 9918, 13743, 18882, 25810, 35028, 47313, 63513, 84883, 112833, 149373, 196803, 258309, 337590, 439650, 570357, 737496, 950270, 1220688, 1563021, 1995642, 2540466, 3225386
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2016

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 9*x^3 + 18*x^4 + 31*x^5 + 54*x^6 + ...
G.f. = q + 2*q^25 + 5*q^49 + 9*q^73 + 18*q^97 + 31*q^121 + 54*q^145 + ... - _Michael Somos_, Nov 25 2019
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^k: A000726 (k=1), this sequence (k=2), A273845 (k=3), A182819 (k=4).
Cf. Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^2: A000041 (k=1), A015128 (k=2), this sequence (k=3), A160461 (k=5).
Cf. A298311.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 26 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] / QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Nov 25 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) / eta(x + A)^2, n))}; /* Michael Somos, Nov 25 2019 */

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^2.
a(n) ~ sqrt(5/3)*exp(sqrt(10*n)*Pi/3)/(12*n). - Vaclav Kotesovec, Nov 26 2016
Expansion of q^(-1/24) * eta(q^3) / eta(q)^2 in powers of q. - Michael Somos, Nov 25 2019
G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 3. Cf. A000041 (k = 1), A015128 (k = 2), A298311 (k = 4) and A160461 (k = 5). - Peter Bala, Nov 17 2020
Showing 1-10 of 12 results. Next