cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A162736 G.f. is the polynomial (Product_{k=1..30} (1 - x^(3*k)))/(1-x)^30.

Original entry on oeis.org

1, 30, 465, 4959, 40890, 277791, 1618199, 8306730, 38329299, 161383520, 627356796, 2272915164, 7734020120, 24874638204, 76028550900, 221849950497, 620471946324, 1669004265525, 4330837858674, 10869702783150, 26449453637412
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..30]])/(1-x)^30; Coefficients(R!(F)); // G. C. Greubel, Jul 07 2018
  • Mathematica
    CoefficientList[Series[Times@@(1-x^Range[3,90,3])/(1-x)^30,{x,0,20}],x] (* Harvey P. Dale, Oct 04 2011 *)
  • PARI
    x='x+O('x^50); A = prod(k=1, 30, (1-x^(3*k)))/(1-x)^30; Vec(A) \\ G. C. Greubel, Jul 07 2018
    

A162500 Expansion of the polynomial (1-x^3) * (1-x^6) * (1-x^9) / (1-x)^3.

Original entry on oeis.org

1, 3, 6, 9, 12, 15, 17, 18, 18, 17, 15, 12, 9, 6, 3, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle A162499.
Only finitely many terms are nonzero.

Crossrefs

Cf. A162499.

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)/(1-x)^3)); /* complete row without zeros */ // G. C. Greubel, Jul 06 2018
  • Maple
    m:=3: seq(coeff(series(mul((1-x^(3*i)),i=1..m)/(1-x)^m, x,n+1),x,n),n=0..16); # Muniru A Asiru, Jul 07 2018
  • Mathematica
    CoefficientList[ Series[Times @@ (1 - x^(3 Range@3))/(1 - x)^3, {x, 0, 40}], x] (* Wesley Ivan Hurt, Sep 13 2014 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    x='x+O('x^16); Vec((1-x^3)*(1-x^6)*(1-x^9)/(1-x)^3) \\ G. C. Greubel, Jul 06 2018
    

A162539 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) / (1-x)^6.

Original entry on oeis.org

1, 6, 21, 55, 120, 231, 405, 660, 1014, 1484, 2085, 2829, 3724, 4773, 5973, 7315, 8784, 10359, 12013, 13713, 15420, 17091, 18681, 20145, 21440, 22527, 23373, 23952, 24246, 24246, 23952, 23373, 22527, 21440, 20145, 18681, 17091, 15420, 13713
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Programs

  • Magma
    m:=58; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)/(1-x)^6)); /* complete row */ // G. C. Greubel, Jul 06 2018
  • Mathematica
    CoefficientList[ Series[Times @@ (1 - x^(3 Range@6))/(1 - x)^6, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    x='x+O('x^58); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)/(1-x)^6) /* complete row */ \\ G. C. Greubel, Jul 06 2018
    

A162595 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) / (1-x)^7.

Original entry on oeis.org

1, 7, 28, 83, 203, 434, 839, 1499, 2513, 3997, 6082, 8911, 12635, 17408, 23381, 30696, 39480, 49839, 61852, 75565, 90985, 108075, 126750, 146874, 168259, 190666, 213808, 237355, 260941, 284173, 306641, 327929, 347627, 365343, 380715, 393423
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Crossrefs

Cf. A162499.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..7]])/(1-x)^7; Coefficients(R!(F)); // G. C. Greubel, Jul 07 2018
  • Mathematica
    CoefficientList[Series[Times@@(1-x^(3*Range[7]))/(1-x)^7,{x,0,40}],x] (* Harvey P. Dale, Oct 08 2015 *)
  • PARI
    x='x+O('x^50); A = prod(k=1, 7, (1-x^(3*k)))/(1-x)^7; Vec(A) \\ G. C. Greubel, Jul 07 2018
    

A162596 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) / (1-x)^8.

Original entry on oeis.org

1, 8, 36, 119, 322, 756, 1595, 3094, 5607, 9604, 15686, 24597, 37232, 54640, 78021, 108717, 148197, 198036, 259888, 335453, 426438, 534513, 661263, 808137, 976395, 1167054, 1380834, 1618106, 1878844, 2162583, 2468385, 2794815, 3139929
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)/(1-x)^8)); // G. C. Greubel, Jul 06 2018
  • Mathematica
    CoefficientList[Series[Times@@(1-x^(3*Range[8]))/(1-x)^8,{x,0,40}],x] (* Harvey P. Dale, Jun 03 2012 *)
  • PARI
    x='x+O('x^100); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)/(1-x)^8) \\ G. C. Greubel, Jul 06 2018
    

A162602 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) / (1-x)^9.

Original entry on oeis.org

1, 9, 45, 164, 486, 1242, 2837, 5931, 11538, 21142, 36828, 61425, 98657, 153297, 231318, 340035, 488232, 686268, 946156, 1281609, 1708047, 2242560, 2903823, 3711960, 4688355, 5855409, 7236243, 8854348, 10733184, 12895731, 15363997
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Programs

  • Magma
    m:=127; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)/(1-x)^9)); // G. C. Greubel, Jul 06 2018
  • Mathematica
    CoefficientList[ Series[Times @@ (1 - x^(3 Range@9))/(1 - x)^9, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    x='x+O('x^127); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)/(1-x)^9) \\ G. C. Greubel, Jul 06 2018
    

A162617 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) / (1-x)^10.

Original entry on oeis.org

1, 10, 55, 219, 705, 1947, 4784, 10715, 22253, 43395, 80223, 141648, 240305, 393602, 624920, 964955, 1453187, 2139455, 3085611, 4367220, 6075267, 8317827, 11221650, 14933610, 19621965, 25477374, 32713617, 41567965, 52301149, 65196880
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499.
Only finitely many terms are nonzero.

Programs

  • Magma
    m:=155; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)/(1-x)^10)); /* complete row */ // G. C. Greubel, Jul 06 2018
  • Mathematica
    CoefficientList[ Series[Times @@ (1 - x^(3 Range@10))/(1 - x)^10, {x, 0, 70}], x] (* Vincenzo Librandi, Mar 14 2013 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    x='x+O('x^155); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)/(1-x)^10) /* complete row */ \\ G. C. Greubel, Jul 06 2018
    

A162628 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) / (1-x)^11.

Original entry on oeis.org

1, 11, 66, 285, 990, 2937, 7721, 18436, 40689, 84084, 164307, 305955, 546260, 939862, 1564782, 2529737, 3982924, 6122379, 9207990, 13575210, 19650477, 27968304, 39189954, 54123564, 73745529, 99222903, 131936520, 173504485
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)/(1-x)^11)); // G. C. Greubel, Jul 06 2018
  • Mathematica
    CoefficientList[ Series[Times @@ (1 - x^(3 Range@11))/(1 - x)^11, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)/(1-x)^11) \\ G. C. Greubel, Jul 06 2018
    

A162629 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) * (1-x^36) / (1-x)^12.

Original entry on oeis.org

1, 12, 78, 363, 1353, 4290, 12011, 30447, 71136, 155220, 319527, 625482, 1171742, 2111604, 3676386, 6206123, 10189047, 16311426, 25519416, 39094626, 58745103, 86713407, 125903361, 180026925, 253772454, 352995357, 484931877, 658436362
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)*(1-x^36)/(1-x)^12)); // G. C. Greubel, Jul 06 2018
  • Mathematica
    CoefficientList[ Series[Times @@ (1 - x^(3 Range@12))/(1 - x)^12, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)*(1-x^36)/(1-x)^12) \\ G. C. Greubel, Jul 06 2018
    

A162631 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) * (1-x^36) * (1-x^39) / (1-x)^13.

Original entry on oeis.org

1, 13, 91, 454, 1807, 6097, 18108, 48555, 119691, 274911, 594438, 1219920, 2391662, 4503266, 8179652, 14385775, 24574822, 40886248, 66405664, 105500290, 164245393, 250958800, 376862161, 556889086, 810661540, 1163656897
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)*(1-x^36)*(1-x^39)/(1-x)^13)); // G. C. Greubel, Jul 06 2018
  • Mathematica
    CoefficientList[Series[(Times@@(1-x^(3*Range[13])))/(1-x)^13,{x,0,30}],x] (* Harvey P. Dale, May 09 2016 *)
  • PARI
    x='x+O('x^50); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)*(1-x^36)*(1-x^39)/(1-x)^13) \\ G. C. Greubel, Jul 06 2018
    
Showing 1-10 of 30 results. Next