cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A197110 Decimal expansion of Pi^4/120.

Original entry on oeis.org

8, 1, 1, 7, 4, 2, 4, 2, 5, 2, 8, 3, 3, 5, 3, 6, 4, 3, 6, 3, 7, 0, 0, 2, 7, 7, 2, 4, 0, 5, 8, 7, 5, 9, 2, 7, 0, 8, 1, 0, 6, 3, 2, 1, 3, 9, 3, 9, 0, 4, 5, 1, 8, 0, 7, 6, 2, 2, 3, 2, 1, 6, 1, 5, 8, 3, 0, 9, 0, 4, 6, 2, 1, 4, 0, 2, 2, 6, 6, 3, 4, 9, 1, 7, 6, 8, 2
Offset: 0

Views

Author

R. J. Mathar, Oct 10 2011

Keywords

Comments

Decimal expansion of the double zeta function zeta(2,2). Not to be confused with the Hurwitz zeta function of two arguments or with the second derivative of the Riemann zeta function.

Examples

			0.8117424... = A164109/40 .
		

Crossrefs

Programs

Formula

Equals Sum_{n >=2} Sum_{m=1..n-1} 1/(n*m)^2.

Extensions

More terms from D. S. McNeil, Oct 10 2011
Definition simplified by R. J. Mathar, Feb 05 2013

A231535 Decimal expansion of Pi^4/15.

Original entry on oeis.org

6, 4, 9, 3, 9, 3, 9, 4, 0, 2, 2, 6, 6, 8, 2, 9, 1, 4, 9, 0, 9, 6, 0, 2, 2, 1, 7, 9, 2, 4, 7, 0, 0, 7, 4, 1, 6, 6, 4, 8, 5, 0, 5, 7, 1, 1, 5, 1, 2, 3, 6, 1, 4, 4, 6, 0, 9, 7, 8, 5, 7, 2, 9, 2, 6, 6, 4, 7, 2, 3, 6, 9, 7, 1, 2, 1, 8, 1, 3, 0, 7, 9, 3, 4, 1, 4, 5, 7, 8, 1, 5, 6, 5, 0, 1, 9, 9, 5, 0, 3, 3, 9, 7, 9, 4
Offset: 1

Views

Author

Stanislav Sykora, Nov 12 2013

Keywords

Comments

Under proper scaling, the radiation distribution density function in terms of frequency is given by prl(x) = x^3/(exp(x)-1), the Planck's radiation law. This constant is the integral of prl(x) from 0 to infinity and leads to the total amount of electromagnetic radiation emitted by a body.
Also, in an 8-dimensional unit-radius hypersphere, equals one-fifth of its surface (A164109), and twice the integral of r^2 over its volume.

Examples

			6.4939394022668291490960221792470074166485057115123614460978572926647...
		

Crossrefs

Programs

Formula

Equals 6*zeta(4), see A013662. - Bruno Berselli, Nov 12 2013
Equals Gamma(4)*zeta(4) = 2*3*Product_{prime p} (p^4/(p^4-1)). - Stanislav Sykora, Oct 20 2014
Equals Sum_{n, m >= 1} H(n+m)/(n*m*(n+m)) where H(n) is the n-th harmonic number. See Aliev and Dil. - Michel Marcus, Aug 07 2020
From Amiram Eldar, Aug 14 2020: (Start)
Equals Integral_{x=0..oo} x^3/(exp(x)-1) dx.
Equals Integral_{x=0..1} log(x)^3/(x-1) dx. (End)
Equals psi'''(1), the third derivative of the digamma function at 1. - R. J. Mathar, Aug 29 2023

A164108 Decimal expansion of Pi^4/24.

Original entry on oeis.org

4, 0, 5, 8, 7, 1, 2, 1, 2, 6, 4, 1, 6, 7, 6, 8, 2, 1, 8, 1, 8, 5, 0, 1, 3, 8, 6, 2, 0, 2, 9, 3, 7, 9, 6, 3, 5, 4, 0, 5, 3, 1, 6, 0, 6, 9, 6, 9, 5, 2, 2, 5, 9, 0, 3, 8, 1, 1, 1, 6, 0, 8, 0, 7, 9, 1, 5, 4, 5, 2, 3, 1, 0, 7, 0, 1, 1, 3, 3, 1, 7, 4, 5, 8, 8, 4, 1, 1, 1, 3, 4, 7, 8, 1, 3, 7, 4, 6, 8, 9, 6, 2, 3, 7, 1
Offset: 1

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Volume of the 8-dimensional unit sphere.

Examples

			4.0587121264167682181850138620293796354053160696952259038...
		

Crossrefs

Programs

Formula

Equals A164109/8 = A092425/24 = A072691*A102753.
Pi^4/240 = -Integral_{x=0..1} log(1-x)*log(1+x)^2/x dx (Vălean, 2017). - Amiram Eldar, Mar 26 2022

A164104 Decimal expansion of 8*Pi^2/3.

Original entry on oeis.org

2, 6, 3, 1, 8, 9, 4, 5, 0, 6, 9, 5, 7, 1, 6, 2, 2, 9, 8, 3, 5, 5, 8, 6, 4, 2, 6, 6, 6, 3, 3, 6, 4, 0, 3, 0, 2, 7, 5, 0, 3, 1, 9, 8, 4, 1, 9, 3, 0, 8, 7, 7, 5, 0, 0, 3, 7, 6, 8, 9, 3, 1, 6, 6, 9, 9, 2, 0, 1, 1, 9, 5, 2, 6, 4, 5, 1, 2, 1, 3, 9, 8, 1, 3, 3, 8, 0, 6, 2, 4, 0, 9, 9, 1, 6, 1, 3, 9, 2, 8, 4, 8, 6, 4, 0
Offset: 2

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Surface area of the 5-dimensional unit sphere.

Examples

			Equals 26.318945069571622983558642666336...
		

Crossrefs

Programs

Formula

Equals 5*A164103 = 10 * A019699 * A019692.

Extensions

A-number in formula corrected by R. J. Mathar, Aug 12 2010

A164107 Decimal expansion of 16*Pi^3/15.

Original entry on oeis.org

3, 3, 0, 7, 3, 3, 6, 1, 7, 9, 2, 3, 1, 9, 8, 0, 8, 1, 8, 7, 1, 7, 4, 7, 3, 6, 0, 7, 1, 5, 7, 4, 8, 2, 1, 5, 4, 9, 0, 4, 0, 3, 0, 7, 8, 0, 3, 6, 1, 0, 7, 8, 1, 5, 4, 0, 4, 2, 0, 8, 4, 0, 6, 4, 4, 0, 6, 0, 1, 5, 4, 5, 7, 8, 6, 3, 0, 0, 8, 6, 4, 4, 0, 0, 7, 1, 1, 4, 7, 7, 6, 8, 1, 0, 9, 7, 4, 5, 2, 7, 2, 5, 6, 5, 4
Offset: 2

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Surface area of the 7-dimensional unit sphere.

Examples

			Equals 33.07336179231980818717473607157482154904030780...
		

Crossrefs

Programs

A164081 Floor of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 259, 408, 512, 536, 481, 378, 264, 166, 94, 49, 24, 10, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The rounded values of this real sequence is A164082, the ceiling is A164083.
The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.
There are only 17 nonzero terms. - G. C. Greubel, Sep 10 2017

Examples

			Table of approximate real values before taking integer part.
========================
n (2*Pi)^n / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 2nd ed., New York: Springer-Verlag, p. 9, 1993.
  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., New York: Dover, 1973.
  • D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions, New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164081 := proc(n) (2*Pi)^n/(n-1)! ; floor(%) ; end: seq(A164081(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Floor[(2*Pi)^n/(n - 1)!], {n, 1, 100}] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    for(n=1,100, print1(floor((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 10 2017

Formula

a(n) = floor( (2*Pi)^n/(n-1)! ).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009

A164082 Rounded value of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 260, 408, 513, 537, 482, 379, 264, 166, 95, 50, 24, 11, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The floor of this real sequence is A164081, the ceiling is A164083.
The surface area of the n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/ A072479.
There are 18 nonzero terms in this sequence. - G. C. Greubel, Sep 11 2017

Examples

			Table of approximate real values before rounding up or down:
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164082 := proc(n) (2*Pi)^n/(n-1)! ; round(%) ; end: seq(A164082(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Round[(2*Pi)^n/(n - 1)!], {n, 1, 20}] (* G. C. Greubel, Sep 11 2017 *)
  • PARI
    for(n=1,20, print1(round((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 11 2017

Formula

a(n) = round(((2*Pi)^n)/(n-1)!).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009

A164083 Ceiling of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

7, 40, 125, 260, 409, 513, 537, 482, 379, 265, 167, 95, 50, 25, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The rounded values of this real sequence is A164082, the floor is A164081.
The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.

Examples

			Table of approximate real values before rounding up.
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(2Pi)^n/(n-1)!],{n,60}] (* Harvey P. Dale, Jul 30 2020 *)

Formula

a(n) = ceiling(((2*pi)^n)/(n-1)!).

Extensions

Definition corrected - R. J. Mathar, Sep 09 2009

A325629 Floor of number of n-dimensional degrees in an n-sphere.

Original entry on oeis.org

2, 360, 41252, 3712766, 283634468, 19145326633, 1170076174384, 65816784809141, 3447793362911604, 16969079580805447, 7901760333122072321, 350023289756266797348, 14816864219294689084225
Offset: 0

Views

Author

Eliora Ben-Gurion, Sep 07 2019

Keywords

Comments

Only the 0th and 1st terms of this sequence are exact values of n-degrees in an n-sphere, by definition. The 0-sphere, being 2 disconnected points at the ends of a segment, is trivial.
The number of degrees, minutes, seconds in an n-sphere is designed to approximate the size of an n-cube, m^n units in size, as m becomes increasingly small, observed from the center of the sphere. This makes a degree Pi/180 of a radian, a square degree (Pi/180)^2 of a steradian, a cubic degree (Pi/180)^3 of a 3-radian, etc.
The sequence has a maximum value at n = 20626 with a value of 1.3610489172...*10^4479, too large to be written here. I conjecture that the peak value of the function analytically is somewhere near 64800/Pi = 20626.48062...
At n = 56058 the sequence has a value of 281 (actual number 281.4089), meaning the 56058-dimensional sphere has less than 360 degrees. At n = 56070, the function has a value of 0.6978855, turning the rest of the sequence into a string of zeros.
An "N-sphere" is located in an N+1-dimensional space, 1-sphere being a circle, 2-sphere being an ordinary sphere, and so on.
From Jon E. Schoenfield, Sep 07 2019: (Start)
The maximum value of the continuous function is 1.361052727810610001492173640278424460497...*10^4479 and it occurs at 20626.48061662940750570152124725484602696... which is close to 64800/Pi, but it's actually 64799.99997461521504462375443773494034381.../Pi. That numerator appears to be 64800 - z/64800 + (27/10) * z^2 / 64800^3 - ... where z = zeta(2) = Pi^2 / 6. (End)

Examples

			Number of cubic degrees in a 3-sphere:
Surface area of a 3-sphere: 2*Pi^((3+1)/2) / ((3+1)/2 - 1)! = 2*Pi^2 / (2-1)! = 2*Pi^2.
Cubic degrees: 2*Pi^2 * (180/Pi)^3 = 11664000 / Pi = 3712766.512...
Number of tesseractic degrees in a 4-sphere:
Surface area of a 4-sphere: 2*Pi^((4+1)/2) / Gamma(5/2) = 2*Pi^(5/2) / (3*Pi^(1/2)/4) = 8*Pi^2/3.
Tesseractic degrees: 8*Pi^2/3 * (180/Pi)^4 = 2799360000 / Pi^2 = 283634468.641...
		

Crossrefs

Surface area of k-dimensional sphere for k=2..8: A019692, A019694, A164102, A164104, A091925, A164107, A164109.
Cf. A125560.

Formula

a(n) = floor((2*Pi^((n+1)/2)/((n+1)/2-1)!)/(Pi/180)^n).
a(n) = floor((2*Pi^((n+1)/2)/(Gamma((n+1)/2)))/(Pi/180)^n).
a(n) = floor(2^(2n+1)*45^n*Pi^((n+1)/2-n)/((n+1)/2-1)!).
a(n) = floor(2^(2n+1)*45^n*Pi^((n+1)/2-n)/(Gamma((n+1)/2))).
Showing 1-9 of 9 results.