cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A164788 Numbers such that the sum of the distinct prime factors is a cube.

Original entry on oeis.org

1, 15, 45, 75, 135, 183, 225, 285, 295, 354, 357, 375, 405, 429, 510, 549, 583, 675, 708, 799, 855, 910, 943, 1020, 1055, 1062, 1071, 1125, 1215, 1266, 1287, 1416, 1425, 1454, 1475, 1527, 1530, 1634, 1647, 1820, 1875, 2025, 2040, 2124, 2499, 2532, 2550, 2565
Offset: 1

Views

Author

Jonathan Vos Post, Aug 26 2009

Keywords

Comments

This is the 3rd row of the infinite array A(k,n) = n-th positive integer such that the sum of the distinct prime factors is of the form j^k for integers j, k. The 2nd row is A164722.
If k >= 1 and p = (2*k)^3 - 5 is prime (see A200957) then 5*p is a term. - Marius A. Burtea, Jun 30 2019

Examples

			a(2) = 15 because 15 = 3 * 5, the sum of distinct prime factors being 3+5 = 8 = 2^3. a(5) = 183 = 3 * 61 because 3 + 61 = 64 = 4^3. a(7) = 285 because 285 = 3 * 5 * 19 and 3 + 5 + 19 = 27 = 3^3.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..2600]| IsPower(&+PrimeDivisors(n), 3)]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[Range[3000],IntegerQ[Surd[Total[Transpose[FactorInteger[#]][[1]]],3]]&] (* Harvey P. Dale, Jun 21 2013 *)

Formula

{n such that A008472(n) = k^3 for k an integer}. {n such that A008472(n) is in A000578}.

Extensions

More terms from Jon E. Schoenfield, May 27 2010

A227476 Numbers whose sum of semiprime divisors (A076290) is a positive square.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 138, 169, 225, 243, 256, 289, 306, 343, 361, 426, 512, 516, 529, 625, 644, 675, 729, 841, 918, 961, 975, 1002, 1024, 1032, 1125, 1140, 1146, 1150, 1220, 1230, 1288, 1305, 1316, 1331, 1369, 1681, 1849, 2025
Offset: 1

Views

Author

Michel Lagneau, Jul 13 2013

Keywords

Comments

Except for the number 1, the sequence A195942 (Zeroless prime powers (excluding primes)) is a subsequence of this sequence because the set of divisors of the numbers of the form p^m with p prime and m >= 2 contains only one semiprime divisor, p^2.
The subset of the nonprime powers is {138, 225, 306, 426, 516, 644, 675, 918, ...}.

Examples

			138 is in the sequence because the divisors of 138 are {1, 2, 3, 6, 23, 46, 69, 138} and the sum of the semiprime divisors is 2*3 + 2*23 + 3*23 = 11^2.
		

Crossrefs

Programs

  • Mathematica
    semipSigma[n_] := DivisorSum[n, # &, PrimeOmega[#] == 2 &]; Select[Range[2000], (s = semipSigma[#]) > 0 && IntegerQ @ Sqrt[s] &] (* Amiram Eldar, May 10 2020 *)
  • PARI
    isok(n) = issquare(s = sumdiv(n, d, d*(bigomega(d)==2))) && (s>0); \\ Michel Marcus, Sep 16 2017

Extensions

Definition corrected by Michel Marcus, Sep 16 2017

A228181 Numbers k such that sum of square of prime divisors of k equals sum of prime divisors of k+1.

Original entry on oeis.org

12, 27, 385, 1120, 4840, 9936, 14500, 29440, 95795, 105875, 178904, 223155, 341248, 343343, 754985, 830908, 1059630, 1841049, 2408832, 2949375, 3564704, 4934358, 5368792, 5500312, 6695000, 6805372, 8332831, 8846656, 10126336, 12956040, 13157235, 17254600
Offset: 1

Views

Author

Michel Lagneau, Aug 15 2013

Keywords

Comments

Numbers k such that A005063(k) = A008472(k+1).

Examples

			The prime divisors of 9936 are {2, 3, 23} and the prime divisors of 9937 are {19, 523} => 2^2 + 3^2 + 23^2 = 19 + 523 = 542, hence 9936 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..2500000]| &+PrimeDivisors(k+1) eq &+[PrimeDivisors(k)[i]^2: i in [1..#PrimeDivisors(k)]]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    fQ[n_] := Plus @@ (First@# & /@ FactorInteger[n]^2) == Plus @@ (First@# & /@ FactorInteger[n + 1]); Select[ Range@ 100000, fQ]

A165346 Numbers such that the sum of the distinct prime factors is a fourth power.

Original entry on oeis.org

1, 39, 55, 66, 117, 132, 158, 198, 264, 275, 316, 351, 396, 507, 528, 594, 605, 632, 726, 792, 1053, 1056, 1095, 1188, 1255, 1264, 1375, 1452, 1491, 1506, 1521, 1584, 1782, 2112, 2130, 2178, 2211, 2376, 2528, 2904, 3012, 3025, 3111, 3159, 3168, 3285, 3363
Offset: 1

Views

Author

Jonathan Vos Post, Sep 15 2009

Keywords

Comments

This is the 4th row of the infinite array A(k,n) = n-th positive integer such that the sum of the distinct prime factors is of the form j^k for integers j, k. The 2nd row is A164722 (hence the current sequence is a proper subset of A164722). The 3rd row is A164788. The smallest integers whose sum of distinct prime factors is 4^4 are {1255, 1506, 3012, ...}. The smallest integers whose sum of distinct prime factors is 5^4 are {9255, 21455, ...}. The smallest integers whose sum of distinct prime factors is 6^4 are {6455, 7746, ...}. The smallest integers whose sum of distinct prime factors is 7^4 are {4798, 9596, ...}.

Examples

			a(2) = 39, because 39 = 3*13, and 3+13 = 16 = 2^4.
a(7) = 158, because 158 = 2*79, and 2+79 = 81 = 3^4.
		

Crossrefs

Programs

  • Maple
    A008472 := proc(n) add( p, p = numtheory[factorset](n)) ; end: isA000583 := proc(n) iroot(n,4,'exct') ; exct ; end: A165346 := proc(n) if n = 1 then 1; else for a from procname(n-1)+1 do if isA000583(A008472(a)) then RETURN(a); fi; od: fi; end: seq(A165346(n),n=1..80) ; # R. J. Mathar, Sep 20 2009
  • Mathematica
    a165346[n_] := Select[Range@n, IntegerQ[Power[Plus @@ Transpose[FactorInteger[#]][[1]], 1/4]] &]; a165346[3400] (* Michael De Vlieger, Jan 06 2015 *)
  • PARI
    isok(n) = my(f=factor(n)); ispower(vecsum(f[,1]),4); \\ Michel Marcus, Jan 06 2015

Formula

{n such that A008472(n) = k^4 for k an integer}.
{n such that A008472(n) is in A000583}.

Extensions

More terms from R. J. Mathar, Sep 20 2009

A194196 Numbers k such that the sum of the divisors of k and the sum of the distinct prime divisors of k are both a square.

Original entry on oeis.org

1, 66, 94, 1092, 1146, 1416, 1491, 1782, 2130, 2159, 2805, 3012, 3531, 4836, 8736, 9065, 9911, 12532, 13156, 15960, 16194, 24096, 25866, 27652, 29316, 29484, 30942, 34162, 34782, 34860, 37736, 37884, 38232, 38688, 40257, 41331, 48204, 51460, 54162, 54411
Offset: 1

Views

Author

Michel Lagneau, Aug 18 2011

Keywords

Examples

			94 is in the sequence because the distinct prime divisors are {2,47} -> sum = 7^2, and the divisors are {1,2,47,94} -> sum = 12^2.
		

Crossrefs

Programs

  • Maple
    isA006532 :=proc(n) issqr(numtheory[sigma](n)) ; end proc:
    A008472 := proc(n) add(d, d=numtheory[factorset](n)) ; end proc:
    isA164722 :=proc(n) issqr(A008472(n)) ; end proc:
    for n from 1 to 50000 do if isA006532(n) and isA164722(n) then printf("%d,",n); end if; end do; # R. J. Mathar, Aug 18 2011
  • PARI
    isok(k) = my(f=factor(k)); issquare(sigma(f)) && issquare(vecsum(f[,1])); \\ Michel Marcus, Dec 05 2020

Formula

{A006532 intersection A164722}.

A227478 Numbers k such that both the sum of the semiprime divisors of k and the sum of the prime divisors of k are squares.

Original entry on oeis.org

1146, 2874, 9870, 33220, 34353, 43140, 50694, 52290, 66440, 86280, 94350, 100804, 101097, 103059, 106140, 121540, 125070, 127897, 132880, 139908, 156870, 172560, 183475, 191140, 193410, 201608, 208692, 212280, 243080, 248378, 265760, 276094, 279816, 303291
Offset: 1

Views

Author

Michel Lagneau, Jul 13 2013

Keywords

Comments

The sequence is infinite: if a number of the form p(1) * p(2) * ... * p(i)^2 * p(i+1) * ... * p(m) is in the sequence where p(1), ..., p(m) are primes, then the numbers p(1) * p(2) * ... * p(i)^q * p(i+1) * ... * p(m) are also in the sequence for q = 3, 4, ... For example, the infinite subsequence 33220, 66440, 132880, ... contains the numbers of the form 2^q * 5 * 11 * 151 for q = 2, 3, 4, ... where 2+5+11+151 = 169 = 13^2 and 2*2 + 2*5 + 2*11 + 2*151 + 5*11 + 5*151 + 11*151 = 2809 = 53^2.
In this sequence, the corresponding pairs of squares are (961, 196), (2401, 484), (900, 64), (2809, 169), (4900, 361), (7225, 729), (2304, 100), (1521, 100), (2809, 169), (7225, 729), (1225, 64), (3721, 121), (12100, 289), (4900, 361), (2704, 100), (7225, 169), (8100, 400), (2916, 169), (2809, 169), (12769, 225), (1521, 100), (7225, 729), (8464, 225), (13225, 529), (5329, 121), (3721, 121), (1369, 64), (2704, 100), (7225, 169), (13689, 289), (2809, 169), (3364, 100), (12769, 225), (12100, 289), ...

Examples

			1146 = 2*3*191 is in the sequence because the divisors are {1, 2, 3, 6, 191, 382, 573, 1146}, so the sum of the semiprime divisors is 6 + 382 + 573 = 961 = 31^2 and the sum of the prime divisors is 2 + 3 + 191 = 196 = 14^2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 310000 do:x:=divisors(n):n1:=nops(x): y:=factorset(n):n2:=nops(y):s1:=0:s2:=0:for i from 1 to n1 do: if bigomega(x[i])=2 then s1:=s1+x[i]:else fi:od: s2:=sum('y[i]', 'i'=1..n2):if sqrt(s1)=floor(sqrt(s1)) and sqrt(s2)=floor(sqrt(s2)) then printf(`%d, `,n):else fi:od:
  • Mathematica
    Rest@ Select[Range[3*10^5], AllTrue[{DivisorSum[#, # &, PrimeOmega@ # == 2 &], DivisorSum[#, # &, PrimeQ]}, IntegerQ@ Sqrt@ # &] &] (* Michael De Vlieger, Sep 15 2017 *)

A367949 Lexicographically earliest sequence of distinct positive integers such that the sum of the distinct prime factors (sopf) of a(n) + a(n + 1) is a perfect square.

Original entry on oeis.org

1, 13, 15, 24, 4, 10, 18, 21, 7, 32, 14, 25, 3, 11, 17, 22, 6, 8, 20, 19, 9, 5, 23, 16, 12, 2, 26, 29, 27, 28, 38, 54, 40, 52, 42, 50, 44, 48, 46, 66, 51, 41, 53, 39, 55, 37, 57, 35, 31, 61, 33, 59, 58, 34, 60, 72, 45, 47, 65, 67, 88, 70, 62, 30, 36, 56, 76, 79, 104, 80
Offset: 1

Views

Author

Keywords

Examples

			a(1) + a(2) =  1 + 13 = 14 whose sopf is  9, a perfect square.
a(2) + a(3) = 13 + 15 = 28 whose sopf is  9, a perfect square.
a(7) + a(8) = 18 + 21 = 39 whose sopf is 16, a perfect square.
a(8) + a(9) = 21 +  7 = 28 whose sopf is  9, a perfect square.
		

Crossrefs

Programs

  • Mathematica
    a[1]=1;a[n_]:=a[n]=(k=1;While[MemberQ[ar=Array[a,n-1],k] ||!IntegerQ@Sqrt@Total[First/@FactorInteger[k+a[n-1]]],k++];k);Array[a, 70]

A380953 Numbers m such that the sum of its distinct prime factors and the sum of its nonprime divisors are both squares.

Original entry on oeis.org

1, 323, 3887, 5183, 149903, 311790, 777923, 1327103, 6718463, 12446783, 14605487, 16402499, 20373435, 28128270, 30856494, 33144430, 37058230, 37380745, 68661901, 86755609, 139557721, 159954570, 221294682, 222538813, 229159043, 269108440, 360590058, 412621345
Offset: 1

Views

Author

Michel Lagneau, Feb 09 2025

Keywords

Comments

Or numbers m such that A008472(m) and (A000203(m) - A008472(m)) are both squares.

Examples

			s1 is the sum of the prime factors, s2 is the sum of the nonprime divisors.
+----------------------------+-------------------------+-----+-------+
|    m   |  prime factors    |   nonprimedivisors      |  s1 |  s2   |
+----------------------------+-------------------------+-----+-------+
|    323 | {17, 19}          | {1, 323}                | 6^2 |  18^2 |
+----------------------------+-------------------------+-----+-------+
|   3887 | {13, 23}          | {1, 169, 299, 3887}     | 6^2 |  66^2 |
+----------------------------+-------------------------+-----+-------+
|   5183 | {71, 73}          | {1, 5183}               |12^2 |  72^2 |
+----------------------------+-------------------------+-----+-------+
| 149903 | {13, 887}         | {1, 169, 11531, 149903} |30^2 | 402^2 |
+----------------------------+-------------------------+-----+-------+
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^8:print(1):
    for m from 2 to nn do:
     d:=factorset(m):n0:=nops(d):s:=sum('d[i]', 'i'=1..n0):
        if issqr(s) and issqr(sigma(m)-s) then print(m):
         else
        fi:
     od:
  • PARI
    isok(m) = my(f=factor(m), s=sum(k=1, #f~, f[k,1])); issquare(s) && issquare(sigma(f)-s); \\ Michel Marcus, Feb 09 2025

Extensions

More terms from Jinyuan Wang, Feb 11 2025
Showing 1-8 of 8 results.