A258993
Triangle read by rows: T(n,k) = binomial(n+k,n-k), k = 0..n-1.
Original entry on oeis.org
1, 1, 3, 1, 6, 5, 1, 10, 15, 7, 1, 15, 35, 28, 9, 1, 21, 70, 84, 45, 11, 1, 28, 126, 210, 165, 66, 13, 1, 36, 210, 462, 495, 286, 91, 15, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1, 66, 715, 3003, 6435, 8008, 6188, 3060, 969, 190, 21
Offset: 1
. n\k | 0 1 2 3 4 5 6 7 8 9 10 11
. -----+-----------------------------------------------------------
. 1 | 1
. 2 | 1 3
. 3 | 1 6 5
. 4 | 1 10 15 7
. 5 | 1 15 35 28 9
. 6 | 1 21 70 84 45 11
. 7 | 1 28 126 210 165 66 13
. 8 | 1 36 210 462 495 286 91 15
. 9 | 1 45 330 924 1287 1001 455 120 17
. 10 | 1 55 495 1716 3003 3003 1820 680 153 19
. 11 | 1 66 715 3003 6435 8008 6188 3060 969 190 21
. 12 | 1 78 1001 5005 12870 19448 18564 11628 4845 1330 231 23 .
If a diagonal of 1's is added on the right, this becomes
A085478.
T(n,k):
A000217 (k=1),
A000332 (k=2),
A000579 (k=3),
A000581 (k=4),
A001287 (k=5),
A010965 (k=6),
A010967 (k=7),
A010969 (k=8),
A010971 (k=9),
A010973 (k=10),
A010975 (k=11),
A010977 (k=12),
A010979 (k=13),
A010981 (k=14),
A010983 (k=15),
A010985 (k=16),
A010987 (k=17),
A010989 (k=18),
A010991 (k=19),
A010993 (k=20),
A010995 (k=21),
A010997 (k=22),
A010999 (k=23),
A011001 (k=24),
A017714 (k=25),
A017716 (k=26),
A017718 (k=27),
A017720 (k=28),
A017722 (k=29),
A017724 (k=30),
A017726 (k=31),
A017728 (k=32),
A017730 (k=33),
A017732 (k=34),
A017734 (k=35),
A017736 (k=36),
A017738 (k=37),
A017740 (k=38),
A017742 (k=39),
A017744 (k=40),
A017746 (k=41),
A017748 (k=42),
A017750 (k=43),
A017752 (k=44),
A017754 (k=45),
A017756 (k=46),
A017758 (k=47),
A017760 (k=48),
A017762 (k=49),
A017764 (k=50).
T(n+k,n):
A005408 (k=1),
A000384 (k=2),
A000447 (k=3),
A053134 (k=4),
A002299 (k=5),
A053135 (k=6),
A053136 (k=7),
A053137 (k=8),
A053138 (k=9),
A196789 (k=10).
-
Flat(List([1..12], n-> List([0..n-1], k-> Binomial(n+k,n-k) ))); # G. C. Greubel, Aug 01 2019
-
a258993 n k = a258993_tabl !! (n-1) !! k
a258993_row n = a258993_tabl !! (n-1)
a258993_tabl = zipWith (zipWith a007318) a094727_tabl a004736_tabl
-
[Binomial(n+k,n-k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Aug 01 2019
-
Table[Binomial[n+k,n-k], {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
-
T(n,k) = binomial(n+k,n-k);
for(n=1, 12, for(k=0,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
-
[[binomial(n+k,n-k) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Aug 01 2019
A121314
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 7, 15, 10, 1, 0, 1, 9, 28, 35, 15, 1, 0, 1, 11, 45, 84, 70, 21, 1, 0, 1, 13, 66, 165, 210, 126, 28, 1, 0, 1, 15, 91, 286, 495, 462, 210, 36, 1
Offset: 0
Triangle begins
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 5, 6, 1;
0, 1, 7, 15, 10, 1;
0, 1, 9, 28, 35, 15, 1;
0, 1, 11, 45, 84, 70, 21, 1;
A165310
a(0)=1, a(1)=3, a(n) = 7*a(n-1) - 9*a(n-2) for n > 1.
Original entry on oeis.org
1, 3, 12, 57, 291, 1524, 8049, 42627, 225948, 1197993, 6352419, 33684996, 178623201, 947197443, 5022773292, 26634636057, 141237492771, 748950724884, 3971517639249, 21060066950787, 111676809902268, 592197066758793
Offset: 0
-
I:=[1,3]; [n le 2 select I[n] else 7*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 24 2011
-
LinearRecurrence[{7,-9},{1,3},30] (* Harvey P. Dale, Sep 23 2011 *)
A123970
Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^(n-k) in the monic characteristic polynomial of the n X n matrix (min(i,j)) (i,j=1,2,...,n) (0 <= k <= n, n >= 1).
Original entry on oeis.org
1, 1, -1, 1, -3, 1, 1, -6, 5, -1, 1, -10, 15, -7, 1, 1, -15, 35, -28, 9, -1, 1, -21, 70, -84, 45, -11, 1, 1, -28, 126, -210, 165, -66, 13, -1, 1, -36, 210, -462, 495, -286, 91, -15, 1, 1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 1, -66, 715, -3003, 6435, -8008
Offset: 0
Triangular sequence (gives the odd Tutte-Beraha constants as roots!) begins:
1;
1, -1;
1, -3, 1;
1, -6, 5, -1;
1, -10, 15, -7, 1;
1, -15, 35, -28, 9, -1;
1, -21, 70, -84, 45, -11, 1;
1, -28, 126, -210, 165, -66, 13, -1;
1, -36, 210, -462, 495, -286, 91, -15, 1;
1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1;
...
- S. Beraha, Infinite non-trivial families of maps and chromials, Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1975.
- Steven R. Finch, Mathematical Constants (Encyclopedia of Mathematics and its Applications), chapter 5.25.
- W. T. Tutte, "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.
Modulo signs, inverse matrix to
A039599.
-
/* As triangle */ [[(-1)^k*Binomial(n + k, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 04 2019
-
with(linalg): m:=(i,j)->min(i,j): M:=n->matrix(n,n,m): T:=(n,k)->coeff(charpoly(M(n),x),x,n-k): 1; for n from 1 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
An[d_] := MatrixPower[Table[Min[n, m], {n, 1, d}, {m, 1, d}], -1]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
A165312
a(0)=1, a(1)=5, a(n)=11*a(n-1)-25*a(n-2) for n>1.
Original entry on oeis.org
1, 5, 30, 205, 1505, 11430, 88105, 683405, 5314830, 41378005, 322287305, 2510710230, 19560629905, 152399173205, 1187375157630, 9251147403805, 72078242501105, 561581982417030, 4375445744059705, 34090353624231005
Offset: 0
A165311
a(0)=1, a(1)=4, a(n)=9*a(n-1)-16*a(n-2) for n>1.
Original entry on oeis.org
1, 4, 20, 116, 724, 4660, 30356, 198644, 1302100, 8540596, 56031764, 367636340, 2412218836, 15827788084, 103854591380, 681446713076, 4471346955604, 29338975191220, 192509225431316, 1263159425822324, 8288287225499860
Offset: 0
A165314
a(0)=1, a(1)=6, a(n)=13*a(n-1)-36*a(n-2) for n>1.
Original entry on oeis.org
1, 6, 42, 330, 2778, 24234, 215034, 1923018, 17258010, 155125482, 1395342906, 12554940426, 112981880922, 1016786596650, 9150878043258, 82357097082954, 741210652521114, 6670882987788138, 60037895350485690, 540340851995941002
Offset: 0
A165322
a(0)=1, a(1)=7, a(n)=15*a(n-1)-49*a(n-2) for n>1.
Original entry on oeis.org
1, 7, 56, 497, 4711, 46312, 463841, 4688327, 47596696, 484222417, 4931098151, 50239573832, 511969798081, 5217807853447, 53180597695736, 542036380617137, 5524696422165991, 56310663682250152, 573949830547618721
Offset: 0
A165323
a(0)=1, a(1)=8, a(n)=17*a(n-1)-64*a(n-2) for n>1.
Original entry on oeis.org
1, 8, 72, 712, 7496, 81864, 911944, 10263752, 116119368, 1317149128, 14959895624, 170020681416, 1932918264136, 21978286879688, 249924108049992, 2842099476549832, 32320548186147656, 367554952665320904
Offset: 0
A165324
a(0)=1, a(1)=9, a(n)= 19*a(n-1)-81*a(n-2) for n>1.
Original entry on oeis.org
1, 9, 90, 981, 11349, 136170, 1667961, 20661489, 257463450, 3218224941, 40291734429, 504866733930, 6328837455921, 79353706214169, 995084584139610, 12478956895304901, 156498329695484709, 1962672755694512490
Offset: 0
Showing 1-10 of 13 results.
Comments