cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A045877 Rotating digits of a(n)^2 right once still yields a square.

Original entry on oeis.org

1, 2, 3, 16, 21, 31, 129, 221, 247, 258, 1062, 1593, 1964, 2221, 13516, 17287, 18516, 19821, 22221, 28064, 29631, 103764, 182362, 222221, 273543, 1246713, 1509437, 1635219, 1856538, 2222221, 2253804, 2749249, 2784807, 11619096, 11949507
Offset: 1

Views

Author

Keywords

Comments

Squares resulting in leading zeros excluded.
(2*10^k-11)/9 are terms, i.e. A165402 is a subsequence. - Chai Wah Wu, Apr 23 2022

Examples

			13516^2 = 18268225{6} -> {6}18268225 = 24865^2.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy.solvers.diophantine.diophantine import diop_DN
    def A045877_gen(): # generator of terms
        for l in count(0):
            l1, l2 = 10**(l+1), 10**l
            yield from sorted(set(abs(x) for z in (diop_DN(10,m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2))
    A045877_list = list(islice(A045877_gen(),30)) # Chai Wah Wu, Apr 23 2022

Extensions

More terms from Patrick De Geest, Nov 15 1998

A238303 Triangle T(n,k), 0<=k<=n, read by rows given by T(n,0) = 1, T(n,k) = 2 if k>0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2014

Keywords

Comments

Row sums are A005408(n).
Diagonals sums are A109613(n).
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000012(n), A005408(n), A036563(n+2), A058481(n+1), A083584(n), A137410(n), A233325(n), A233326(n), A233328(n), A211866(n+1), A165402(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A151575(n), A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A005408(n), A016813(n), A017077(n) for x = 0, 1, 2, 3 respectively.
Sum_{k=0..n} k*T(n,k) = A002378(n).
Sum_{k=0..n} A000045(k)*T(n,k) = A019274(n+2).
Sum_{k=0..n} A000142(k)*T(n,k) = A066237(n+1).

Examples

			Triangle begins:
1;
1, 2;
1, 2, 2;
1, 2, 2, 2;
1, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
...
		

Crossrefs

Cf. Diagonals: A040000.
Cf. Columns: A000012, A007395.
First differences of A001614.

Programs

Formula

T(n,0) = A000012(n) = 1, T(n+k,k) = A007395(n) = 2 for k>0.

Extensions

Data section extended to a(104) by Antti Karttunen, Jan 19 2025

A309603 Digits of the 10-adic integer (-11/9)^(1/3).

Original entry on oeis.org

1, 4, 1, 3, 3, 4, 9, 2, 3, 9, 4, 8, 9, 1, 0, 5, 1, 4, 1, 4, 3, 7, 7, 4, 7, 8, 1, 2, 3, 0, 0, 1, 7, 6, 1, 8, 9, 4, 1, 4, 2, 9, 9, 0, 3, 2, 5, 7, 9, 3, 3, 2, 2, 8, 7, 5, 8, 2, 0, 8, 7, 4, 5, 1, 2, 2, 6, 5, 5, 0, 8, 2, 3, 0, 3, 2, 9, 2, 5, 8, 6, 6, 3, 0, 2, 5, 3, 0, 1, 1, 4, 0, 9, 9, 8, 4, 5, 9, 4, 5
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2019

Keywords

Examples

			       1^3 == 1      (mod 10).
      41^3 == 21     (mod 10^2).
     141^3 == 221    (mod 10^3).
    3141^3 == 2221   (mod 10^4).
   33141^3 == 22221  (mod 10^5).
  433141^3 == 222221 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-11/9+O(2^N))^(1/3), 2^N), Mod((-11/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309603(n)
      ary = [1]
      a = 1
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 + 11)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309603(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 11) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A322925 Expansion of x*(1 + 2*x + 10*x^2)/((1 - x^2)*(1 - 10*x^2)).

Original entry on oeis.org

0, 1, 2, 21, 22, 221, 222, 2221, 2222, 22221, 22222, 222221, 222222, 2222221, 2222222, 22222221, 22222222, 222222221, 222222222, 2222222221, 2222222222, 22222222221, 22222222222, 222222222221, 222222222222, 2222222222221, 2222222222222, 22222222222221
Offset: 0

Views

Author

Vincenzo Librandi, Mar 16 2019

Keywords

Crossrefs

Bisections give: A002276 (even part), A165402 (odd part).

Programs

  • GAP
    a:=[0,1,2,21];; for n in [5..30] do a[n]:=11*a[n-2]-10*a[n-4]; od; Print(a); # Muniru A Asiru, Apr 10 2019
  • Magma
    I:=[0,1,2,21]; [n le 4 select I[n] else 11*Self(n-2)-10*Self(n-4): n in [1..30]];
    
  • Maple
    seq(coeff(series(x*(1+2*x+10*x^2)/((1-x^2)*(1-10*x^2)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Apr 10 2019
  • Mathematica
    CoefficientList[Series[x (1 + 2 x + 10 x^2)/((1 - x^2) (1 - 10 x^2)), {x, 0, 33}], x]
    LinearRecurrence[{0,11,0,-10},{0,1,2,21},30] (* Harvey P. Dale, Mar 02 2021 *)

Formula

G.f.: x*(1 + 2*x + 10*x^2)/((1 - x^2)*(1 - 10*x^2)).
a(n) = 11*a(n-2) - 10* a(n-4).
a(n) = 2*(10^n - 1)/9 for n even; a(n) = (2*10^n - 11)/9 otherwise.
a(n) = (2/9)*10^floor((n + 1)/2) + (-1)^n/2 - 13/18. - Bruno Berselli, Mar 16 2019

A238339 Square number array read by ascending antidiagonals: T(1,k) = 2*k + 1, and T(n,k) = (2*n^(k+1)-n-1)/(n-1) otherwise.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 25, 29, 9, 1, 1, 11, 41, 79, 61, 11, 1, 1, 13, 61, 169, 241, 125, 13, 1, 1, 15, 85, 311, 681, 727, 253, 15, 1, 1, 17, 113, 517, 1561, 2729, 2185, 509, 17, 1, 1, 19, 145, 799, 3109, 7811, 10921, 6559, 1021, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2014

Keywords

Examples

			Square array begins:
1..1...1.....1......1.......1........1........1...
1..3...5.....7......9......11.......13.......15...
1..5..13....29.....61.....125......253......509...
1..7..25....79....241.....727.....2185.....6559...
1..9..41...169....681....2729....10921....43689...
1.11..61...311...1561....7811....39061...195311...
1.13..85...517...3109...18661...111973...671845...
1.15.113...799...5601...39215...274513..1921599...
1.17.145..1169...9361...74897...599185..4793489...
1.19.181..1639..14761..132859..1195741.10761679...
1.21.221..2221..22221..222221..2222221.22222221...
		

Crossrefs

Cf. A238303.

Programs

  • Maple
    T:= proc(n, k); if n=1 then 2*k+1 else (2*n^(k+1)-n-1)/(n-1) fi end:
    seq(seq(T(n-k, k), k=0..n), n=0..10); # Georg Fischer, Oct 14 2023

Formula

T(0,k) = A000012(k) = 1;
T(1,k) = A005408(k) = 2k+1;
T(2,k) = A036563(k+2);
T(3,k) = A058481(k+1);
T(4,k) = A083584(k);
T(5,k) = A137410(k);
T(6,k) = A233325(k);
T(7,k) = A233326(k);
T(8,k) = A233328(k);
T(9,k) = A211866(k+1);
T(10,k) = A165402(k+1);
T(n,0) = A000012(n) = 1;
T(n,1) = A005408(n) = 2*n+1;
T(n,2) = A001844(n) = 2*n^2 + 2*n + 1.

Extensions

Definition amended by Georg Fischer, Oct 14 2023
Showing 1-5 of 5 results.