A248434 Number of length three 0..n arrays with the sum of two elements equal to twice the third.
2, 9, 16, 29, 42, 61, 80, 105, 130, 161, 192, 229, 266, 309, 352, 401, 450, 505, 560, 621, 682, 749, 816, 889, 962, 1041, 1120, 1205, 1290, 1381, 1472, 1569, 1666, 1769, 1872, 1981, 2090, 2205, 2320, 2441, 2562, 2689, 2816, 2949, 3082, 3221, 3360, 3505, 3650
Offset: 1
Keywords
Examples
Some solutions for n=6: ..2....3....6....1....3....4....3....1....6....2....4....0....4....5....4....3 ..6....1....2....0....2....3....3....2....5....3....0....1....3....6....4....5 ..4....5....4....2....1....5....3....3....4....1....2....2....2....4....4....4
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 210 terms from R. H. Hardin)
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
PARI
a(n) = {my(res = 2); if(n % 2 == 0, res+=(1 + 6*floor(n/2))); n = (n-1)>>1; res+=6*n^2 + 8*n; res} \\ David A. Corneth, Aug 26 2020
-
PARI
first(n) = {my(res = vector(n), inc = 7); res[1] = 2; for(i = 2, n, res[i] = res[i-1] + inc; inc += 6 * (i%2 == 1)); res} \\ David A. Corneth, Aug 26 2020
Formula
Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
Empirical for n mod 2 = 0: a(n) = (3/2)*n^2 + n + 1.
Empirical for n mod 2 = 1: a(n) = (3/2)*n^2 + n - (1/2).
From Hywel Normington, Aug 21 2020: (Start)
a(n) = a(n-1) + 1 + 6*floor(n/2)
a(n) = A319127(n+1) + n + 1 = 6*floor((n+1)/2)*floor(n/2) + n + 1.
(End)
From Colin Barker, Aug 28 2020: (Start)
G.f.: x*(2 + 5*x - 2*x^2 + x^3) / ((1 - x)^3*(1 + x)).
a(n) = (1 + 3*(-1)^n + 4*n + 6*n^2) / 4 for n>0.
(End)
Extensions
Name simplified by Andrew Howroyd, Aug 14 2020
Comments