cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A263881 Numbers k such that k! is a "compact factorial", i.e., k! is in A169661.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 11
Offset: 1

Views

Author

Jonathan Sondow, Nov 17 2015

Keywords

Comments

Sequence linked to A050376.

Crossrefs

Formula

a(n)! = A169661(n).

A050376 "Fermi-Dirac primes": numbers of the form p^(2^k) where p is prime and k >= 0.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

Every number n is a product of a unique subset of these numbers. This is sometimes called the Fermi-Dirac factorization of n (see A182979). Proof: In the prime factorization n = Product_{j>=1} p(j)^e(j) expand every exponent e(j) as binary number and pick the terms of this sequence corresponding to the positions of the ones in binary (it is clear that both n and n^2 have the same number of factors in this sequence, and that each factor appears with exponent 1 or 0).
Or, a(1) = 2; for n>1, a(n) = smallest number which cannot be obtained as the product of previous terms. This is evident from the unique factorization theorem and the fact that every number can be expressed as the sum of powers of 2. - Amarnath Murthy, Jan 09 2002
Except for the first term, same as A084400. - David Wasserman, Dec 22 2004
The least number having 2^n divisors (=A037992(n)) is the product of the first n terms of this sequence according to Ramanujan.
According to the Bose-Einstein distribution of particles, an unlimited number of particles may occupy the same state. On the other hand, according to the Fermi-Dirac distribution, no two particles can occupy the same state (by the Pauli exclusion principle). Unique factorizations of the positive integers by primes (A000040) and over terms of A050376 one can compare with two these distributions in physics of particles. In the correspondence with this, the factorizations over primes one can call "Bose-Einstein factorizations", while the factorizations over distinct terms of A050376 one can call "Fermi-Dirac factorizations". - Vladimir Shevelev, Apr 16 2010
The numbers of the form p^(2^k), where p is prime and k >= 0, might thus be called the "Fermi-Dirac primes", while the classic primes might be called the "Bose-Einstein primes". - Daniel Forgues, Feb 11 2011
In the theory of infinitary divisors, the most natural name of the terms is "infinitary primes" or "i-primes". Indeed, n is in the sequence, if and only if it has only two infinitary divisors. Since 1 and n are always infinitary divisors of n>1, an i-prime has no other infinitary divisors. - Vladimir Shevelev, Feb 28 2011
{a(n)} is the minimal set including all primes and closed with respect to squaring. In connection with this, note that n and n^2 have the same number of factors in their Fermi-Dirac representations. - Vladimir Shevelev, Mar 16 2012
In connection with this sequence, call an integer compact if the factors in its Fermi-Dirac factorization are pairwise coprime. The density of such integers equals (6/Pi^2)*Product_{prime p} (1+(Sum_{i>=1} p^(-(2^i-1))/(p+1))) = 0.872497... It is interesting that there exist only 7 compact factorials listed in A169661. - Vladimir Shevelev, Mar 17 2012
The first k terms of the sequence solve the following optimization problem:
Let x_1, x_2,..., x_k be integers with the restrictions: 2<=x_1A064547(Product{i=1..k} x_i) >= k. Let the goal function be Product_{i=1..k} x_i. Then the minimal value of the goal function is Product_{i=1..k} a(i). - Vladimir Shevelev, Apr 01 2012
From Joerg Arndt, Mar 11 2013: (Start)
Similarly to the first comment, for the sequence "Numbers of the form p^(3^k) or p^(2*3^k) where p is prime and k >= 0" one obtains a factorization into distinct factors by using the ternary expansion of the exponents (here n and n^3 have the same number of such factors).
The generalization to base r would use "Numbers of the form p^(r^k), p^(2*r^k), p^(3*r^k), ..., p^((r-1)*r^k) where p is prime and k >= 0" (here n and n^r have the same number of (distinct) factors). (End)
The first appearance of this sequence as a multiplicative basis in number theory with some new notions, formulas and theorems may have been in my 1981 paper (see the Abramovich reference). - Vladimir Shevelev, Apr 27 2014
Numbers n for which A064547(n) = 1. - Antti Karttunen, Feb 10 2016
Lexicographically earliest sequence of distinct nonnegative integers such that no term is a product of 2 or more distinct terms. Removing the distinctness requirement, the sequence becomes A000040 (the prime numbers); and the equivalent sequence where the product is of 2 distinct terms is A026416 (without its initial term, 1). - Peter Munn, Mar 05 2019
The sequence was independently developed as a multiplicative number system in 1985-1986 (and first published in 1995, see the Uhlmann reference) using a proof method involving representations of positive integers as sums of powers of 2. This approach offers an arguably simpler and more flexible means for analyzing the sequence. - Jeffrey K. Uhlmann, Nov 09 2022

Examples

			Prime powers which are not terms of this sequence:
  8 = 2^3 = 2^(1+2), 27 = 3^3 = 3^(1+2), 32 = 2^5 = 2^(1+4),
  64 = 2^6 = 2^(2+4), 125 = 5^3 = 5^(1+2), 128 = 2^7 = 2^(1+2+4)
"Fermi-Dirac factorizations":
  6 = 2*3, 8 = 2*4, 24 = 2*3*4, 27 = 3*9, 32 = 2*16, 64 = 4*16,
  108 = 3*4*9, 120 = 2*3*4*5, 121 = 121, 125 = 5*25, 128 = 2*4*16.
		

References

  • V. S. Abramovich, On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu) (1981) No. 2, 13-17 (Russian; MR0632989(83a:10003)).
  • S. Ramanujan, Highly Composite Numbers, Collected Papers of Srinivasa Ramanujan, p. 125, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).
  • J. K. Uhlmann, Dynamic map building and localization: new theoretical foundations, Doctoral Dissertation, University of Oxford, Appendix 16, 1995.

Crossrefs

Cf. A000040 (primes, is a subsequence), A026416, A026477, A037992 (partial products), A050377-A050380, A052330, A064547, A066724, A084400, A176699, A182979.
Cf. A268388 (complement without 1).
Cf. A124010, subsequence of A000028, A000961, A213925, A223490.
Cf. A228520, A186945 (Fermi-Dirac analog of Ramanujan primes, A104272, and Labos primes, A080359).
Cf. also A268385, A268391, A268392.

Programs

  • Haskell
    a050376 n = a050376_list !! (n-1)
    a050376_list = filter ((== 1) . a209229 . a100995) [1..]
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    isA050376 := proc(n)
        local f,e;
        f := ifactors(n)[2] ;
        if nops(f) = 1 then
            e := op(2,op(1,f)) ;
            if isA000079(e) then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    A050376 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            2 ;
        else
            for a from procname(n-1)+1 do
                if isA050376(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 26 2017
  • Mathematica
    nn = 300; t = {}; k = 1; While[lim = nn^(1/k); lim > 2,  t = Join[t, Prime[Range[PrimePi[lim]]]^k]; k = 2 k]; t = Union[t] (* T. D. Noe, Apr 05 2012 *)
  • PARI
    {a(n)= local(m, c, k, p); if(n<=1, 2*(n==1), n--; c=0; m=2; while( cMichael Somos, Apr 15 2005; edited by Michel Marcus, Aug 07 2021
    
  • PARI
    lst(lim)=my(v=primes(primepi(lim)),t); forprime(p=2,sqrt(lim),t=p; while((t=t^2)<=lim,v=concat(v,t))); vecsort(v) \\ Charles R Greathouse IV, Apr 10 2012
    
  • PARI
    is_A050376(n)=2^#binary(n=isprimepower(n))==n*2 \\ M. F. Hasler, Apr 08 2015
    
  • PARI
    ispow2(n)=n && n>>valuation(n,2)==1
    is(n)=ispow2(isprimepower(n)) \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    isok(n)={my(e=isprimepower(n)); e && !bitand(e,e-1)} \\ Andrew Howroyd, Oct 16 2024
    
  • Python
    from sympy import isprime, perfect_power
    def ok(n):
      if isprime(n): return True
      answer = perfect_power(n)
      if not answer: return False
      b, e = answer
      if not isprime(b): return False
      while e%2 == 0: e //= 2
      return e == 1
    def aupto(limit):
      alst, m = [], 1
      for m in range(1, limit+1):
        if ok(m): alst.append(m)
      return alst
    print(aupto(241)) # Michael S. Branicky, Feb 03 2021
    
  • Python
    from sympy import primepi, integer_nthroot
    def A050376(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025
  • Scheme
    (define A050376 (MATCHING-POS 1 1 (lambda (n) (= 1 (A064547 n)))))
    ;; Requires also my IntSeq-library. - Antti Karttunen, Feb 09 2016
    

Formula

From Vladimir Shevelev, Mar 16 2012: (Start)
Product_{i>=1} a(i)^k_i = n!, where k_i = floor(n/a(i)) - floor(n/a(i)^2) + floor(n/a(i)^3) - floor(n/a(i)^4) + ...
Denote by A(x) the number of terms not exceeding x.
Then A(x) = pi(x) + pi(x^(1/2)) + pi(x^(1/4)) + pi(x^(1/8)) + ...
Conversely, pi(x) = A(x) - A(sqrt(x)). For example, pi(37) = A(37) - A(6) = 16-4 = 12. (End)
A209229(A100995(a(n))) = 1. - Reinhard Zumkeller, Mar 19 2013
From Vladimir Shevelev, Aug 31 2013: (Start)
A Fermi-Dirac analog of Euler product: Zeta(s) = Product_{k>=1} (1+a(k)^(-s)), for s > 1.
In particular, Product_{k>=1} (1+a(k)^(-2)) = Pi^2/6. (End)
a(n) = A268385(A268392(n)). [By their definitions.] - Antti Karttunen, Feb 10 2016
A000040 union A001248 union A030514 union A179645 union A030635 union .... - R. J. Mathar, May 26 2017

Extensions

Edited by Charles R Greathouse IV, Mar 17 2010
More examples from Daniel Forgues, Feb 09 2011

A177436 The number of positive integers m for which the exponents of 2 and prime(n) in the prime power factorization of m! are both powers of 2.

Original entry on oeis.org

7, 7, 6, 3, 4, 4, 3, 4, 8, 10, 2, 2, 2, 4, 6, 8, 10, 3, 2, 2, 2, 2, 4, 4, 4, 5, 6, 6, 6, 14, 3, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 12, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6
Offset: 2

Views

Author

Vladimir Shevelev, May 08 2010

Keywords

Comments

Or a(n) is the maximal m for which the Fermi-Dirac representation of m! (see comment in A050376) contains single power of 2 and single power of prime(n).

Examples

			For p_5 = 11, we have 11 = 2^3+3. Therefore a(5) = 3.
For p_27 = 103, we have 103 = (2^(4*2+1)+3)/5. Therefore a(27) = 5.
For p_31 = 127, a(31) = 2*(1+floor(log_2((127-5)/(128-127)))) = 14.
		

Crossrefs

Programs

  • Mathematica
    nlim = 127; mlim = (Prime[nlim] + 1)^2/2 + 3; f = Table[0, mlim]; c = Table[0, nlim];
    For[m = 2, m <= mlim, m++,
      mf = FactorInteger[m];
      For[i = 1, i <= Length[mf], i++, f[[PrimePi@First@mf[[i]]]] += Last@mf[[i]]];
      If[! IntegerQ@Log[2, f[[1]]], Continue[]];
      For[p = 1, p <= nlim, p++, If[IntegerQ@Log[2, f[[p]]], c[[p]]++]];
    ]; c (* Robert Price, Jun 19 2019 *)

Formula

a(2) = a(3) = 7; a(4) = 6; if p_n has the form (2^(4*k+1)+3)/5, k>=2, then a(n) = 5; if p_n is a Fermat prime: p_n = 2^(2^(k-1))+1, k>=3, then a(n) = 4; if p_n has the form 2^k+3, k>=3, then a(n) = 3; otherwise, if 2^(k-1)+3 < p_n <= 2^k-1, then a(n) = 2*(1+floor(log_2((p_n-5)/(2^k-p_n)))), where p_n = prime(n).

Extensions

a(32)-a(127) from Robert Price, Jun 19 2019

A177378 a(n) is the smallest prime p>2 such that there are 2*n or 2*n+1 positive integers m for which the exponents of 2 and p in the prime power factorization of m! are both powers of 2.

Original entry on oeis.org

11, 13, 3, 29, 31, 251, 127, 509, 1021, 4091, 4093, 65519, 8191, 131063, 262133, 262139, 131071, 1048571, 524287, 8388593, 4194301, 67108837, 16777213, 67108861, 1073741789, 2147483587, 2147483629, 536870909
Offset: 1

Views

Author

Vladimir Shevelev, May 07 2010

Keywords

Examples

			By the formula, for n=6, consider k >= 6. If k=6, then g(6,6) = 3, but 6 does not equal to 6 - floor(log_2(3)); if k=7, then g=15, but 6 does not equal to 7 - floor(log_2(15)); if k=8, then g=5 and we see that 6 = 8 - floor(log_2(5)). Therefore a(6) = 2^8 - 5 = 251.
		

Crossrefs

Formula

For sufficiently large n, 2^n - 1 <= a(n) <= 2^ceiling(40*n/19). Let k >= n. Put g = g(n,k) = min{odd j >= 2^(k-n): 2^k - j is prime} and h(n) = min{k: k - n = floor(log_2(g))}. Then a(n) = 2^h(n) - g(n,h(n)).

A177459 The maximal positive integer m for which the exponents of 2 and prime(n) in the prime power factorization of m! are both powers of 2.

Original entry on oeis.org

19, 131, 34, 19, 35, 35, 35, 67, 259, 575, 67, 67, 67, 131, 259, 515, 1027, 131, 131, 131, 131, 131, 259, 259, 259, 514, 515, 515, 515, 8195
Offset: 2

Views

Author

Vladimir Shevelev, May 09 2010

Keywords

Comments

Or a(n) is the maximal m for which the Fermi-Dirac representation of m! (see comment in A050376) contains single power of 2 and single power of prime(n).

Examples

			For n=31, prime(n)=127 is Mersenne primes. Thus a(31)=(1/2)*128^2+3=8195.
		

Crossrefs

Formula

a(2)=19, a(3)=131; if prime(n) has the form (2^(4k+1)+3)/5 for k>=1,then a(n)=5*prime(n)-1; if prime(n)>=17 is Fermat prime, then a(n)=2*prime(n)+1; if prime(n) has the form 2^k+3 for k>=3, then a(n)=2*prime(n)-3; otherwise, if prime(n) is in interval [2^(k-1)+5, 2^k) for k>=4, then a(n)=3+2^(k+floor(log_2((p_n-5)/(2^k-prime(n)))). In any case, a(n)<=(1/2)*(prime(n)+1)^2+3. Equality holds for Mersenne primes>=31.

A177498 a(n) is the maximal positive integer m for which exponents of prime(n) and prime(n+1) in the prime power factorization of m! are both powers of 2.

Original entry on oeis.org

20, 98, 54, 38, 152, 94, 68, 260, 154, 332, 696, 386, 234, 476, 1002, 548, 1138, 2342, 656, 1342, 746, 800, 1648, 3332, 1750, 3530, 1852, 1016, 2158, 2226, 8904, 1250, 9684, 2566, 2668, 5378, 2838, 2940, 11634, 3076, 12414, 6368, 12804, 3382, 3586, 7358, 14754
Offset: 3

Views

Author

Vladimir Shevelev, May 10 2010

Keywords

Comments

For n=2 the corresponding value is not known; moreover, we do not know if this value is finite (in any case, it is not less than 524306). See also comment to A177458.
If a(2) exists, then it is at least 81129638414606681695789005144146. - Charles R Greathouse IV, Apr 10 2012

Crossrefs

Programs

Formula

The maximal m with the considered property is in interval [q, 2*(-1+q^2*(log(2)/(2*log(q)-1)+1))), where q=prime(n+1).

Extensions

Extended by T. D. Noe, Apr 10 2012

A279070 Compact numbers: numbers that can be expressed more compactly using their prime factorization than their decimal expansion.

Original entry on oeis.org

2187, 2401, 3125, 6561, 12167, 14641, 15625, 16384, 16807, 19683, 24389, 28561, 29791, 32768, 50653, 59049, 65536, 68921, 78125, 79507, 83521, 100489, 103823, 109375, 109561, 113569, 117649, 120409, 121801, 124609, 128881, 130321, 131072, 134689, 137781
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 25 2016

Keywords

Comments

For any number k > 1, write its "compact prime factorization", with no spaces, as p1^e1*p2^e2*...*pj^ej, where p1, p2, ..., pj are the distinct prime factors of k and e1, e2, ..., ej are their respective exponents, but omit each exponent whose value is 1 (along with its caret character "^"). Sequence gives those numbers k whose compact prime factorization has fewer characters than k has decimal digits.
The smallest term other than a prime power is 109375 = 5^6*7.
The smallest term that is a power of 10 is 10000000 = 2^7*5^7.
The smallest term that is a factorial is 45!
= 119622220865480194561963161495657715064383733760000000000
= 2^41*3^21*5^10*7^6*11^4*13^3*17^2*19^2*23*29*31*37*41*43.
Includes 2^k for k >= 14, 3^k for k >= 7, 5^k for k >= 5, 7^k for k >= 4. - Robert Israel, Dec 26 2016
Let k'(b) be the smallest k such that b^k is included; then the sequence k'(2), k'(3), k'(4), ... begins {14, 7, 7, 5, 9, 4, 5, 4, 7, 4, 8, 4, 7, 6, 4, 4, 7, 4, 7, 6, 6, 3, 6, 3, ...} (with the larger values generally occurring where b has more than one prime divisor). It appears that b^k is included for all b > 1 and all k >= k'(b) with only two exceptions: although 6^k'(6) = 6^9 = 10077696 = 2^9*3^9 and 6^12 = 2176782336 = 2^12*3^12 are included, 6^10 = 60466176 = 2^10*3^10 and 6^11 = 362797056 = 2^11*3^11 are not. - Jon E. Schoenfield, Dec 26 2016
Note that there is another class of numbers that are called "Compact". See the definition in A169661. See also the links from T. M. Apostol and from V. Shevelev in the same entry. See also A070566 and A145554. - Omar E. Pol, Dec 26 2016

Examples

			The number 2187 = 3^7 can be written more compactly as "3^7" (3 characters) than as "2187" (4 characters), so 2187 is in the sequence.
		

Crossrefs

Programs

  • Maple
    filter:=  proc(n) local F,t;
        F:= ifactors(n)[2];
        nops(F)-2+add(ilog10(t[1])+1+`if`(t[2]=1,0,2+ilog10(t[2])),t=F)Robert Israel, Dec 26 2016
Showing 1-7 of 7 results.