cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A249674 a(n) = 30*n.

Original entry on oeis.org

0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570, 600, 630, 660, 690, 720, 750, 780, 810, 840, 870, 900, 930, 960, 990, 1020, 1050, 1080, 1110, 1140, 1170, 1200, 1230, 1260, 1290, 1320, 1350, 1380, 1410, 1440
Offset: 0

Views

Author

Kaylan Purisima, Nov 03 2014

Keywords

Comments

Numbers divisible by 2, 3 and 5. - Robert Israel, Nov 19 2014
a(n) is the maximum score of a 10-pin n-frame bowling game and the maximum score of an n-pin 10-frame bowling game, given the rules: a strike is worth the number of pins in each frame plus the number of pins knocked down by the next two balls (except in the last frame), a spare is worth the number of pins in each frame plus the number of pins knocked down by the next ball (except in the last frame), and if a strike or spare is earned in the last frame then the player must continue to throw balls until they have thrown 3 balls in the last frame. - Iain Fox, Mar 02 2018

Examples

			a(7) = 7 * 30 = 210.
		

Crossrefs

Programs

Formula

G.f.: 30*x/(x-1)^2; a(n) = 2*a(n-1) - a(n-2). - Wesley Ivan Hurt, Nov 18 2014
a(n) = 2*A008597(n) = 3*A008592(n) = 5*A008588(n) = 6*A008587(n) = 10*A008585(n) = 15*A005843(n). - Omar E. Pol, Nov 24 2014
From Elmo R. Oliveira, Apr 08 2025: (Start)
E.g.f.: 30*x*exp(x).
a(n) = A169823(n)/2. (End)

A305548 a(n) = 27*n.

Original entry on oeis.org

0, 27, 54, 81, 108, 135, 162, 189, 216, 243, 270, 297, 324, 351, 378, 405, 432, 459, 486, 513, 540, 567, 594, 621, 648, 675, 702, 729, 756, 783, 810, 837, 864, 891, 918, 945, 972, 999, 1026, 1053, 1080, 1107, 1134, 1161, 1188, 1215, 1242, 1269, 1296, 1323, 1350, 1377, 1404, 1431, 1458, 1485, 1512
Offset: 0

Views

Author

Eric Chen, Jun 05 2018

Keywords

Crossrefs

For a(n) = k*n: A001489 (k=-1), A000004 (k=0), A001477 (k=1), A005843 (k=2), A008585 (k=3), A008591 (k=9), A008607 (k=25), A252994 (k=26), this sequence (k=27), A135628 (k=28), A195819 (k=29), A249674 (k=30), A135631 (k=31), A174312 (k=32), A044102 (k=36), A085959 (k=37), A169823 (k=60), A152691 (k=64).

Programs

  • Mathematica
    Range[0,2000,27]
  • PARI
    a(n)=27*n

Formula

a(n) = 27*n.
a(n) = A008585(A008591(n)) = A008591(A008585(n)).
G.f.: 27*x/(x-1)^2.
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 27*x*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)

A169825 Multiples of 420.

Original entry on oeis.org

0, 420, 840, 1260, 1680, 2100, 2520, 2940, 3360, 3780, 4200, 4620, 5040, 5460, 5880, 6300, 6720, 7140, 7560, 7980, 8400, 8820, 9240, 9660, 10080, 10500, 10920, 11340, 11760, 12180, 12600, 13020, 13440, 13860, 14280, 14700, 15120, 15540, 15960, 16380, 16800
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2010

Keywords

Comments

Numbers that are divisible by all of 1,2,3,4,5,6,7.

Crossrefs

Programs

Formula

a(n) = 420*n. - Wesley Ivan Hurt, Apr 11 2021
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 420*x/(x-1)^2.
E.g.f.: 420*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A169823(n) = 14*A249674(n) = 15*A135628(n) = 20*A008603(n) = 21*A008602(n) = 28*A008597(n) = 30*A008596(n) = 60*A008589(n) = 420*A001477(n) = A169827(n)/2. (End)

A169827 Multiples of 840.

Original entry on oeis.org

0, 840, 1680, 2520, 3360, 4200, 5040, 5880, 6720, 7560, 8400, 9240, 10080, 10920, 11760, 12600, 13440, 14280, 15120, 15960, 16800, 17640, 18480, 19320, 20160, 21000, 21840, 22680, 23520, 24360, 25200, 26040, 26880, 27720, 28560, 29400, 30240, 31080, 31920
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2010

Keywords

Comments

Numbers that are divisible by all of 1,2,3,4,5,6,7,8.

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 840*x/(x-1)^2.
E.g.f.: 840*x*exp(x).
a(n) = 840*n = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A169825(n) = 14*A169823(n) = 21*A317095(n) = 28*A249674(n) = 30*A135628(n) = 40*A008603(n) = 60*A008596(n) = 420*A005843(n) = 840*A001477(n). (End)

A334080 Number of Pythagorean triples among the divisors of 60*n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 6, 4, 6, 2, 8, 2, 6, 4, 5, 4, 9, 2, 4, 6, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 9, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 6, 8, 2, 8, 4, 9, 2, 12, 2, 4, 6, 6, 4, 12, 2, 10, 5, 4, 2, 12, 4
Offset: 1

Views

Author

Michel Lagneau, Apr 14 2020

Keywords

Comments

The odd numbers of the sequence are rare (see the table below).
The subsequence of odd terms begins with 1, 3, 3, 3, 5, 3, 5, 9, 3, 9, 7, 9, 5, 9, 9, 3, 11, 15, 5, 9, 5, 15, 9, 9, 9, 5, 19, 3, 15, 15, 9, ... (see the table at the link).
It is interesting to note that each set of divisors of A169823(n) contains m primitive Pythagorean triples for some n, m = 1, 2, ...
Examples:
- The set of divisors of A169823(1)= 60 contains only one primitive Pythagorean triple: (3, 4, 5).
- The set of divisors of A169823(136) = 8160 contains two primitive Pythagorean triples: (3, 4, 5) and (8, 15, 17).
- The set of divisors of A169823(910) = 54600 contains three primitive Pythagorean triples: (3, 4, 5), (5, 12, 13) and (7, 24, 25).
There is an interesting property: we observe that a(n) = A000005(n) except for n in the set {13, 26, 34, 39, 52, 65, 68, 70, 78, 91, 102, ...}. This set contains subset of numbers of the form 13*k, 34*k, 70*k, 203*k, 246*k, 259*k, ... for k = 1, 2, ...
We recognize the sequence A081752: {13, 34, 70, 203, 246, 259, 671, ...} (ordered product of the sides of primitive Pythagorean triangles divided by 60).
The following table shows the numbers of odd terms < 10^k for k = 2, 3, 4, 5, 6 and 7. For instance, among the 16 multiples of 60 less than 10^3, the divisors of the five numbers 60, 240, 540, 780 and 960 contain 1, 3, 3, 3 and 5 Pythagorean triples respectively, and that represents 31.25% of odd numbers.
+---------------+-----------------+---------------------+----------+
| Intervals | Number of | Number of odd terms | |
| D(k) < 10^k | multiples of 60 | in D(k) | % |
| k = 2,3,...,7 | in D(k) | | |
+---------------+-----------------+---------------------+----------+
| < 10^2 | 1 | 1 | 100% |
| < 10^3 | 16 | 5 | 31.250% |
| < 10^4 | 166 | 18 | 10.843% |
| < 10^5 | 1666 | 72 | 4.321% |
| < 10^6 | 16666 | 256 | 1.536% |
| < 10^7 | 166666 | 879 | 0.527% |
|---------------+-----------------+---------------------+----------+

Examples

			a(4) = 3 because the divisors of A169823(4) = 240 are {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} with 3 Pythagorean triples: (3, 4, 5), (6, 8, 10) and (12, 16, 20). The first triple is primitive.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 60 by 60 to 5400 do :
       d:=divisors(n):n0:=nops(d):it:=0:
        for i from 1 to n0-1 do:
         for j from i+1 to n0-2 do :
          for m from i+2 to n0 do:
           if d[i]^2 + d[j]^2 = d[m]^2
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
        printf(`%d, `,it):
       od:
  • PARI
    ishypo(n) = setsearch(Set(factor(n)[, 1]%4), 1); \\ A009003
    a(n) = {n *= 60; my(d=divisors(n), nb=0); for (i=3, #d, if (ishypo(d[i]), for (j=2, i-1, for (k=3, j-1, if (d[j]^2 + d[k]^2 == d[i]^2, nb++););););); nb;} \\ Michel Marcus, Apr 26 2020

A334382 Least k whose set of divisors contains exactly n Pythagorean triples, or 0 if no such k exists.

Original entry on oeis.org

60, 120, 240, 360, 960, 720, 3840, 1440, 2160, 2880, 8160, 3600, 69360, 8400, 8640, 7200, 32640, 9360, 16800, 14400, 34560, 24480, 130560, 18720, 77760, 54600, 28080, 25200, 67200, 37440, 11045580, 61200, 73440, 97920, 294000, 46800, 65520, 50400, 268800, 109200
Offset: 1

Views

Author

Michel Lagneau, Apr 26 2020

Keywords

Comments

This is a subsequence of A169823: a(n) == 0 (mod 60) because one side of every Pythagorean triple is divisible by 3, another by 4, and another by 5. The smallest and best-known Pythagorean triple is (a, b, c) = (3, 4, 5).

Examples

			a(3) = 240 because the set of divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 Pythagorean triples: (3, 4, 5), (6, 8, 10) and (12, 16, 20). The first triple is primitive.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 52 do :
    ii:=0:
    for k from 60 by 60 to 10^8 while(ii=0) do:
       d:=divisors(k):n0:=nops(d):it:=0:
        for i from 1 to n0-1 do:
         for j from i+1 to n0-2 do :
          for m from i+2 to n0 do:
           if d[i]^2 + d[j]^2 = d[m]^2
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
        if it = n
         then
         ii:=1: printf (`%d %d \n`,n,k):
         else
        fi:
    od:
    od:

Extensions

a(31) from Giovanni Resta, Apr 27 2020

A096472 Numbers containing squares of Pythagorean triples in their divisor set.

Original entry on oeis.org

3600, 7200, 10800, 14400, 18000, 21600, 25200, 28800, 32400, 36000, 39600, 43200, 46800, 50400, 54000, 57600, 61200, 64800, 68400, 72000, 75600, 79200, 82800, 86400, 90000, 93600, 97200, 100800, 104400, 108000, 111600, 115200, 118800, 122400, 126000, 129600, 133200
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 13 2004

Keywords

Comments

a(n) = m * (A046083(k)*A046084(k)*A009000(k))^2 for appropriate, not necessarily unique m and k.

Examples

			5^2 + 12^2 = 13^2: 5^2, 12^2 and 13^2 are divisors of 608400 = (13*5*3*2^2)^2, therefore 608400 is a term.
		

Crossrefs

Cf. Pythagorean triples: A046083, A046084, A009000.

Programs

  • Mathematica
    Range[50]*3600 (* Paolo Xausa, Jul 01 2025 *)
  • PARI
    my(x='x+O('x^38)); Vec(3600*x/(1-x)^2) \\ Elmo R. Oliveira, Jun 30 2025

Formula

a(n) = n*60^2.
From Elmo R. Oliveira, Jun 30 2025: (Start)
G.f.: 3600*x/(1-x)^2.
E.g.f.: 3600*x*exp(x).
a(n) = 60*A169823(n) = 100*A044102(n).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

Name clarified by Tanya Khovanova, Jul 05 2021
More terms from Elmo R. Oliveira, Jun 30 2025

A377418 a(n) is the smallest integer k whose set of divisors contains exactly n triples (x,y,z) of distinct divisors considered as integer-sided triangles with integer areas, or 0 if no such k exists.

Original entry on oeis.org

60, 120, 240, 360, 960, 720, 3480, 1440, 1680, 2880, 6600, 2520, 4200, 10440, 5460, 6240, 4680, 5040, 20400, 7800, 18360, 17160, 26520, 10080, 47040, 9360, 15120, 10920, 55080, 20160, 15600, 16380, 34320, 33600, 18720, 27300, 165240, 53040, 37800, 25200, 21840
Offset: 1

Views

Author

Michel Lagneau, Oct 27 2024

Keywords

Comments

We observe that this sequence is a subsequence of A169823: a(n) == 0 (mod 60).
The area A of a triangle whose sides have lengths x, y, and z is given by Heron's formula: A = sqrt(s*(s-x)*(s-y)*(s-z)), where s = (x+y+z)/2.

Examples

			a(3) = 240 because there are 3 triples of divisors (3, 4, 5), (6, 8, 10) and (12, 16, 20) with integer areas 36, 576, 9216 respectively (Pythagorean triples). The first triple is primitive.
a(9)=1680 because there are 9 triples of divisors (3,4,5), (6,8,10), (7,15,20), (12,16,20), (14,30,40), (21,28,35), (28,60,80), (42,56,70), (84,112,140) with 5 Pythagorean triples : (3,4,5), (6,8,10), (21,28,35), (42,56,70), (84,112,70). The other 4 triangles are arbitrary.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 41 do:
    ii:=0:
    for m from 4 to 10^7 while(ii=0) do:it:=0:
     d:=divisors(m):n0:=nops(d):
      for i from 2 to n0-2 do:
       for j from i+1 to n0 do:
         for k from j+1 to n0 do:
           x:=d[i]:y:=d[j]:z:=d[k]:s:=(x+y+z)/2:A:=s*(s-x)*(s-y)*(s-z):
           if A>0 and sqrt(A)=floor(sqrt(A)) then it:=it+1:else
            fi:
           od:
        od:
       od:
        if it=n then printf(`%d %d \n`,it,m):ii:=1:
         else fi:
      od:
    od:
Showing 1-8 of 8 results.