cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144437 Period 3: repeat [3, 3, 1].

Original entry on oeis.org

3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3
Offset: 1

Views

Author

Paul Curtz, Oct 05 2008

Keywords

Comments

The sequence is generated from numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...
Conjecture: a(n) is the separatix. See A045944.
Also the decimal expansion of the constant 3310/999. - R. J. Mathar, May 21 2009
Continued fraction expansion of A171417.
Greatest common divisor of (n+1)^2-1 and (n+1)^2+2. - Bruno Berselli, Mar 08 2017

Crossrefs

Numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...

Programs

Formula

a(n) = (7-4*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008
G.f.: x*(3 + 3*x + x^2)/((1 - x)*(1 + x + x^2)). - R. J. Mathar, May 21 2009
a(n) = 3/gcd(n,3). - Reinhard Zumkeller, Oct 30 2009
a(n) = denominator(n^k/3), where k>0 is an integer. - Enrique Pérez Herrero, Oct 05 2011
a(n) = gcd(T(n+1), T(2)) = A256095(n+1, 2), with the triangular numbers T = A000217, for n >= 1. - Wolfdieter Lang, Mar 17 2015
a(n) = a(n-3) for n>3; a(n) = A169609(n) for n>0. - Wesley Ivan Hurt, Jul 02 2016
E.g.f.: (1/3)*(7*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2) - 3). - G. C. Greubel, Aug 24 2017
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 9/(a(n-2)*a(n-1)).
a(n) = 7 - a(n-2) - a(n-1). See also A052901 or A069705. (End)

Extensions

Edited by R. J. Mathar, May 21 2009

A188734 Decimal expansion of (7+sqrt(65))/4.

Original entry on oeis.org

3, 7, 6, 5, 5, 6, 4, 4, 3, 7, 0, 7, 4, 6, 3, 7, 4, 1, 3, 0, 9, 1, 6, 5, 3, 3, 0, 7, 5, 7, 5, 9, 4, 2, 7, 8, 2, 7, 8, 3, 5, 9, 9, 0, 7, 6, 4, 0, 2, 1, 4, 3, 3, 4, 6, 9, 8, 4, 1, 4, 8, 0, 9, 7, 3, 1, 5, 9, 6, 8, 7, 3, 7, 7, 5, 6, 4, 2, 2, 0, 5, 0, 7, 4, 0, 0, 3, 8, 5, 6, 6, 6, 7, 9, 3, 0, 7, 6, 6, 0, 9, 0, 9, 3, 6, 0, 6, 1, 6, 5, 3, 4, 9, 8, 6, 4, 7, 8, 0, 5, 3, 4, 3, 7, 1, 6, 3, 0, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Apr 12 2011

Keywords

Comments

Apart from the second digit, the same as A171417. - R. J. Mathar, Apr 15 2011
Apart from the first two digits, the same as A188941. - Joerg Arndt, Apr 16 2011
Decimal expansion of the length/width ratio of a (7/2)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A (7/2)-extension rectangle matches the continued fraction [3,1,3,3,1,3,3,1,3,3,1,3,3,...] for the shape L/W=(7+sqrt(65))/4. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the (7/2)-extension rectangle, 3 squares are removed first, then 1 square, then 3 squares, then 3 squares,..., so that the original rectangle of shape (7+sqrt(65))/4 is partitioned into an infinite collection of squares.

Examples

			3.7655644370746374130916533075759427827835990...
		

Crossrefs

Cf. A188640.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (7+Sqrt(65))/4; // G. C. Greubel, Nov 01 2018
  • Maple
    evalf((7+sqrt(65))/4,140); # Muniru A Asiru, Nov 01 2018
  • Mathematica
    r = 7/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
  • PARI
    default(realprecision, 100); (7+sqrt(65))/4 \\ G. C. Greubel, Nov 01 2018
    

A188941 Decimal expansion of (9+sqrt(65))/4.

Original entry on oeis.org

4, 2, 6, 5, 5, 6, 4, 4, 3, 7, 0, 7, 4, 6, 3, 7, 4, 1, 3, 0, 9, 1, 6, 5, 3, 3, 0, 7, 5, 7, 5, 9, 4, 2, 7, 8, 2, 7, 8, 3, 5, 9, 9, 0, 7, 6, 4, 0, 2, 1, 4, 3, 3, 4, 6, 9, 8, 4, 1, 4, 8, 0, 9, 7, 3, 1, 5, 9, 6, 8, 7, 3, 7, 7, 5, 6, 4, 2, 2, 0, 5, 0, 7, 4, 0, 0, 3, 8, 5, 6, 6, 6, 7, 9, 3, 0, 7, 6, 6, 0, 9, 0, 9, 3, 6, 0, 6, 1, 6, 5, 3, 4, 9, 8, 6, 4, 7, 8, 0, 5, 3, 4, 3, 7, 1, 6, 3, 0, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Apr 14 2011

Keywords

Comments

Apart from the first digit, the same as A171417. Apart from the first 2 digits, the same as A188734. - R. J. Mathar, Apr 15 2011
Decimal expansion of the shape (= length/width = (9+sqrt(65))/4) of the greater (9/2)-contraction rectangle.
See A188738 for an introduction to lesser and greater r-contraction rectangles, their shapes, and partitioning these rectangles into a sets of squares in a manner that matches the continued fractions of their shapes.

Examples

			4.2655644370746374130916533075759427827835990...
		

Crossrefs

Programs

  • Mathematica
    r = 9/2; t = (r + (-4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    RealDigits[(9+Sqrt[65])/4,10,150][[1]] (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    (9+sqrt(65))/4 \\ Jinyuan Wang, Apr 14 2020
Showing 1-3 of 3 results.