A171873 Column sums of triangle A171871.
1, 1, 2, 10, 280, 1173468
Offset: 0
Keywords
Links
- R. Munafo, Classifications of N Elements
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(1) = 1 [o]; a(2) = 1 [o-o]; a(3) = 1 [o-o-o]; a(4) = 2 [o-o-o and o-o-o-o] | o G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + ...
import Data.List (generic_index) import Math.OEIS (getSequenceByID) triangle x = (x * x + x) `div` 2 a000055 n = let {r = genericIndex (fromJust (getSequenceByID "A000081")); (m, nEO) = divMod n 2} in r n - sum (zipWith (*) (map r [0..m]) (map r [n, n-1..])) + (1-nEO) * (triangle (r m + 1)) -- Walt Rorie-Baety, Jun 12 2021
N := 30; P:= PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; G000055 := 1 + G - G^2/2 + Evaluate(G,x^2)/2; A000055 := Eltseq(G000055); // Geoff Baileu (geoff(AT)maths.usyd.edu.au), Nov 30 2009
G000055 := series(1+G000081-G000081^2/2+subs(x=x^2,G000081)/2,x,31); A000055 := n->coeff(G000055,x,n); # where G000081 is g.f. for A000081 starting with n=1 term with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> `if`(n=0, 1, b(n) -(add(b(k) *b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2): seq(a(n), n=0..50); # Alois P. Heinz, Aug 21 2008 # Program to create b-file b000055.txt: A000081 := proc(n) option remember; local d, j; if n <= 1 then n else add(add(d*procname(d),d=numtheory[divisors](j))*procname(n-j),j=1..n-1)/(n-1); fi end: A000055 := proc(nmax) local a81, n, t, a, j, i ; a81 := [seq(A000081(i), i=0..nmax)] ; a := [] ; for n from 0 to nmax do if n = 0 then t := 1+op(n+1, a81) ; else t := op(n+1, a81) ; fi; if type(n, even) then t := t-op(1+n/2, a81)^2/2 ; t := t+op(1+n/2, a81)/2 ; fi; for j from 0 to (n-1)/2 do t := t-op(j+1, a81)*op(n-j+1, a81) ; od: a := [op(a), t] ; od: a end: L := A000055(1000) ; # R. J. Mathar, Mar 06 2009
s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n-1, i] i, {i, 1, n-1}] / (n-1); Table[a[i] - Sum[a[j] a[i-j], {j, 1, i/2}] + If[OddQ[i], 0, a[i/2] (a[i/2] + 1)/2], {i, 1, 50}] (* Robert A. Russell *) b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[d*b[d]*b[n-j], {j, 1, n-1}, {d, Divisors[j]}]/(n-1); a[0] = 1; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
{a(n) = local(A, A1, an, i, t); if( n<2, n>=0, an = Vec(A = A1 = 1 + O('x^n)); for(m=2, n, i=m\2; an[m] = sum(k=1, i, an[k] * an[m-k]) + (t = polcoeff( if( m%2, A *= (A1 - 'x^i)^-an[i], A), m-1))); t + if( n%2==0, binomial( -polcoeff(A, i-1), 2)))}; /* Michael Somos */
N=66; A=vector(N+1, j, 1); for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) ); A000081=concat([0], A); H(t)=subst(Ser(A000081, 't), 't, t); x='x+O('x^N); Vec( 1 + H(x) - 1/2*( H(x)^2 - H(x^2) ) ) \\ Joerg Arndt, Jul 10 2014
# uses function from A000081 def A000055(n): return 1 if n == 0 else A000081(n)-sum(A000081(i)*A000081(n-i) for i in range(1,n//2+1)) + (0 if n % 2 else (A000081(n//2)+1)*A000081(n//2)//2) # Chai Wah Wu, Feb 03 2022
[len(list(graphs.trees(n))) for n in range(16)] # Peter Luschny, Mar 01 2020
Triangle begins: k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sums n 0 1 1 2 1 1 1 1 3 2 1 1 2 1 1 6 3 1 1 3 3 6 3 3 1 1 22 4 1 1 4 6 19 27 50 56 74 56 50 27 19 6 4 1 1 402
P = IntegerPartitions; AC[d_Integer] := Module[{C, M, p},(* from W. Y. C. Chen algorithm *) M[p_List] := Plus @@ p!/(Times @@ p * Times @@ (Length /@ Split[p]!)); C[p_List, q_List] := Module[{r, m, k, x}, r = If[0 == Length[q], 1, 2*2^IntegerExponent[LCM @@ q, 2]]; m = LCM @@ Join[p/GCD[r, p], q/GCD[r, q]]; CoefficientList[Expand[Product[(1 + x^(k *r))^((Plus @@ Map[MoebiusMu[k/#]*2^Plus @@ GCD[#*r, Join[p, q]]&, Divisors[k]])/(k*r)), {k, 1, m}]], x]]; Sum[Binomial[d, p]*Plus @@ Plus @@ Outer[M[#1] M[#2] C[#1, #2]*2^(d - Length[#1] - Length[#2]) &, P[p], P[d - p], 1], {p, 0, d}]/(d! 2^d)]; AC[0] = {1, 1}; AC /@ Range[0, 5] // Flatten (* Jean-François Alcover, Dec 15 2019, after Robert A. Russell in A034189 *) Table[ CoefficientList[ CycleIndexPolynomial[ GraphData[ {"Hypercube", n}, "AutomorphismGroup"], Array[Subscript[x, ##] &, 2^n]] /. Table[ Subscript[x, i] -> 1 + x^i, {i, 1, 2^n}], x], {n, 1,8}] // Grid (* Geoffrey Critzer, Jan 10 2020 *)
Illustrated examples on Munafo web page. - _Robert Munafo_, Jan 24 2010
Comments