A172227
Number of ways to place 4 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 0, 6, 405, 5024, 31320, 133544, 446421, 1258590, 3126724, 7042930, 14669709, 28658436, 53069000, 93909924, 159819965, 262913874, 419816676, 652912510, 991835749, 1475233800, 2152832664, 3087838016, 4359706245, 6067321574, 8332617060, 11304678954
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- J. Brazeal Slides on a Chessboard, Math Horizons, Vol. 27, pp. 24-27, April 2020.
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Eric Weisstein's World of Mathematics, Grid Graph
- Wikipedia, Fairy chess piece
- Wikipedia, Wazir (chess)
-
CoefficientList[Series[- x^2 (4 x^8 - 26 x^7 + 3 x^6 + 303 x^5 - 736 x^4 + 180 x^3 + 1595 x^2 + 351 x + 6) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
A172136
Number of ways to place 5 nonattacking knights on an n X n board.
Original entry on oeis.org
0, 0, 2, 340, 9386, 97580, 649476, 3184708, 12472084, 41199404, 119171110, 309957412, 739123094, 1639655452, 3422020324, 6778432292, 12833460256, 23356032940, 41051290730, 69954580804
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
CoefficientList[Series[2x^2(74 x^15 -518x^14 +1110x^13 +1046x^12 -11332x^11 + 29950x^10 -42430x^9 +32476x^8 -11684x^7 -1000x^6 +15021x^5 -18443x^4 -6352x^3 - 2878x^2 -159x -1)/(x-1)^11, {x,0,40}], x] (* Vincenzo Librandi, May 02 2013 *)
-
[0,0,2,340,9386,97580,649476] + [(n^10 -90*n^8 +240*n^7 +3235*n^6 - 16320*n^5 -40530*n^4 +396480*n^3 -231656*n^2 -3359520*n +6509280)/120 for n in (8..50)] # G. C. Greubel, Apr 19 2022
A244081
Number T(n,k) of ways to place k nonattacking knights on an n X n board; triangle T(n,k), n>=0, 0<=k<=A030978(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 6, 4, 1, 1, 9, 28, 36, 18, 2, 1, 16, 96, 276, 412, 340, 170, 48, 6, 1, 25, 252, 1360, 4436, 9386, 13384, 12996, 8526, 3679, 994, 158, 15, 1, 1, 36, 550, 4752, 26133, 97580, 257318, 491140, 688946, 716804, 556274, 323476, 141969, 47684, 12488, 2560, 393, 40, 2
Offset: 0
T(4,8) = 6:
._______. ._______. ._______. ._______. ._______. ._______.
|_|o|_|o| |o|_|o|_| |o|o|o|o| |o|_|_|o| |o|_|o|o| |o|o|_|o|
|o|_|o|_| |_|o|_|o| |_|_|_|_| |o|_|_|o| |_|_|_|o| |o|_|_|_|
|_|o|_|o| |o|_|o|_| |_|_|_|_| |o|_|_|o| |o|_|_|_| |_|_|_|o|
|o|_|o|_| |_|o|_|o| |o|o|o|o| |o|_|_|o| |o|o|_|o| |o|_|o|o| .
.
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 6, 4, 1;
1, 9, 28, 36, 18, 2;
1, 16, 96, 276, 412, 340, 170, 48, 6;
1, 25, 252, 1360, 4436, 9386, 13384, 12996, 8526, 3679, 994, 158, 15, 1;
...
As independence polynomials:
1
1 + x
1 + 4*x + 6*x^2 + 4*x^3 + x^4
1 + 9*x + 28*x^2 + 36*x^3 + 18*x^4 + 2*x^5
1 + 16*x + 96*x^2 + 276*x^3 + 412*x^4 + 340*x^5 + 170*x^6 + 48*x^7 + 6*x^8
...
-
b:= proc(n, l) option remember; local d, f, g, k;
d:= nops(l)/3; f:=false;
if n=0 then 1
elif l[1..d]=[f$d] then b(n-1, [l[d+1..3*d][], true$d])
else for k while not l[k] do od; g:= subsop(k=f, l);
if k>1 then g:=subsop(2*d-1+k=f, g) fi;
if k2 then g:=subsop( d-2+k=f, g) fi;
if k(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, [true$(n*3)])):
seq(T(n), n=0..7);
-
b[n_, l_] := b[n, l] = Module[{d, f, g, k}, d = Length[l]/3; f = False; Which[n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join[l[[d + 1 ;; 3*d]], Array[True&, d]]], True, For[k = 1, !l[[k]], k++]; g = ReplacePart[l, k -> f];
If [k > 1, g = ReplacePart[g, 2*d - 1 + k -> f]];
If [k < d, g = ReplacePart[g, 2*d + 1 + k -> f]];
If [k > 2, g = ReplacePart[ g, d - 2 + k -> f]];
If [k < d - 1, g = ReplacePart[g, d + 2 + k -> f]];
Expand[b[n, ReplacePart[l, k -> f]] + b[n, g]*x]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][
b[n, Array[True&, n*3]]];
Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 28 2016, after Alois P. Heinz *)
Table[Count[IndependentVertexSetQ[KnightTourGraph[n, n], #] & /@ Subsets[Range[n^2], {k}], True], {n, 4}, {k, 0, If[n == 2, 4, (1 - (-1)^n + 2 n^2)/4]}] // Flatten (* Eric W. Weisstein, May 05 2017 *)
A201540
Number of ways to place n nonattacking knights on an n X n board.
Original entry on oeis.org
1, 6, 36, 412, 9386, 257318, 8891854, 379978716, 19206532478, 1120204619108, 74113608972922, 5483225594409823, 448414229054798028, 40154319792412218900, 3906519894750904583838
Offset: 1
-
b[n_, l_] := b[n, l] = Module[{d, f, g, k}, d = Length[l]/3; f = False; Which[n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join[l[[d + 1 ;; 3*d]], Array[True&, d]]], True, For[k = 1, ! l[[k]], k++]; g = ReplacePart[l, k -> f];
If[k > 1, g = ReplacePart[g, 2*d - 1 + k -> f]];
If[k < d, g = ReplacePart[g, 2*d + 1 + k -> f]];
If[k > 2, g = ReplacePart[g, d - 2 + k -> f]];
If[k < d - 1, g = ReplacePart[g, d + 2 + k -> f]];
Expand[b[n, ReplacePart[l, k -> f]] + b[n, g]*x]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Array[True&, n*3]]];
a[n_] := T[n][[n + 1]];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Mar 29 2016, after Alois P. Heinz's code for A244081 *)
A172213
Number of ways to place 4 nonattacking knights on a 4 X n board.
Original entry on oeis.org
1, 16, 84, 412, 1416, 3640, 7928, 15384, 27352, 45432, 71480, 107608, 156184, 219832, 301432, 404120, 531288, 686584, 873912, 1097432, 1361560, 1670968, 2030584, 2445592, 2921432
Offset: 1
-
CoefficientList[Series[-(16 x^9 - 20 x^8 - 40 x^7 + 172 x^6 - 81 x^5 + 41 x^4 + 142 x^3 + 14 x^2 + 11 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,16,84,412,1416,3640,7928,15384,27352,45432},30] (* Harvey P. Dale, Apr 16 2022 *)
A172139
Number of ways to place 4 nonattacking zebras on an n X n board.
Original entry on oeis.org
0, 1, 126, 1168, 7334, 35749, 137970, 438984, 1208246, 2969389, 6662480, 13873100, 27144408, 50389581, 89424014, 152638280, 251834530, 403250693, 628798516, 957543164, 1427453780, 2087456085, 2999819778, 4242915176
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
CoefficientList[Series[x(1+117*x+70*x^2+1274*x^3+1333*x^4-2109*x^5-462*x^6 +8858*x^7-17006*x^8+15166*x^9-6838*x^10+1478*x^11-650*x^12+760*x^13-376*x^14 +64*x^15)/(1-x)^9, {x,0,40}], x] (* Vincenzo Librandi, May 27 2013 *)
-
[0,1,126,1168,7334,35749,137970,438984] + [(n^8 -54*n^6 +240*n^5 +827*n^4 -8592*n^3 +10362*n^2 +75600*n -204864)/24 for n in (9..50)] # G. C. Greubel, Apr 19 2022
A172531
Number of ways to place 4 nonattacking knights on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 228, 600, 12357, 68796, 275888, 872532, 2344025, 5580762, 12107196, 24392446, 46261537, 83426400, 144157632, 240119696, 387393921, 607715342, 929951100
Offset: 1
-
CoefficientList[Series[x^3 (192 x^13 - 1728 x^12 + 7452 x^11 - 21238 x^10 + 46658 x^9 - 84582 x^8 + 125397 x^7 - 144875 x^6 + 124920 x^5 - 79904 x^4 + 39969 x^3 - 15165 x^2 + 1452 x - 228) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
A243719
Number of inequivalent (mod D_8) ways to place 4 nonattacking knights on an n X n board.
Original entry on oeis.org
1, 6, 66, 609, 3375, 14181, 47485, 136085, 342739, 784059, 1653033, 3267471, 6107271, 10901405, 18683285, 30934341, 49659915, 77611995, 118386689, 176753639, 258774303, 372270981, 526962861, 735113445, 1011678595, 1375177451, 1847843545, 2456771055, 3234056439
Offset: 2
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1).
-
[1,6,66,609] cat [(n^8 - 54*n^6 + 144*n^5 + 1048*n^4 - 5280*n^3 - 2432*n^2 + 52800*n - 78912 + (1 - (-1)^n)/2*(14*n^4 - 48*n^3 - 158*n^2 + 768*n - 723))/192: n in [6..30]]; // Vincenzo Librandi, Jun 21 2014
-
Drop[CoefficientList[Series[411 + 171*x + 38*x^2 - 5*x^3 - 15*x^4 - 6*x^5 - (411 - 1473*x - 236*x^2 + 6588*x^3 - 5073*x^4 - 11179*x^5 + 13200*x^6 + 4572*x^7 - 19047*x^8 - 991*x^9 + 9564*x^10 - 1776*x^11 - 1955*x^12 + 675*x^13) / ((1-x)^9*(1+x)^5), {x, 0, 20}], x],2] (* Vaclav Kotesovec, Jun 19 2014 *)
A178499
Number of ways to place 6 nonattacking knights on an n X n board.
Original entry on oeis.org
0, 0, 0, 170, 13384, 257318, 2774728, 20202298, 110018552, 481719518, 1781124856, 5756568738, 16676946372, 44127887910, 108192675468, 248568720338, 539925974784, 1116836380926, 2212958151968, 4220919779218
Offset: 1
-
CoefficientList[Series[- 2 x^3 (200 x^18 - 1540 x^17 + 2602 x^16 + 15442 x^15 - 98586 x^14 + 256698 x^13 - 336146 x^12 + 70977 x^11 + 587107 x^10 - 1302115 x^9 + 1569905 x^8 - 1100786 x^7 + 367130 x^6 - 212358 x^5 + 247682 x^4 + 212463 x^3 + 48293 x^2 + 5587 x + 85) / (x - 1)^13, {x, 0, 40}], x] (* Vincenzo Librandi, May 31 2013 *)
A172966
Number of ways to place 4 nonattacking knights on an n X n cylindrical board.
Original entry on oeis.org
0, 0, 0, 306, 2365, 19047, 90503, 328324, 981693, 2547955, 5933257, 12681288, 25284363, 47595023, 85357395, 146879312, 243867873, 392452803, 614423653, 938708560, 1403123967, 2056426383, 2960698943, 4194107208, 5854060325
Offset: 1
-
CoefficientList[Series[x^3 (76 x^13 - 684 x^12 + 2856 x^11 - 7714 x^10 + 16164 x^9 - 29151 x^8 + 45506 x^7 - 57766 x^6 + 55629 x^5 - 39385 x^4 + 21484 x^3 - 8778 x^2 + 389 x - 306) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
Showing 1-10 of 10 results.
Comments