A020543
a(0) = 1, a(1) = 1, a(n+1) = (n+1)*a(n) + n.
Original entry on oeis.org
1, 1, 3, 11, 47, 239, 1439, 10079, 80639, 725759, 7257599, 79833599, 958003199, 12454041599, 174356582399, 2615348735999, 41845579775999, 711374856191999, 12804747411455999, 243290200817663999, 4865804016353279999
Offset: 0
-
[2*Factorial(n)-1: n in [0..25]]; // Vincenzo Librandi, Sep 30 2013
-
lst={1};s=1;Do[s+=(n+=s*n);AppendTo[lst, s], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 10 2008 *)
FoldList[#1*#2 + #2 - 1 &, 1, Range[20]] (* Robert G. Wilson v, Jul 07 2012 *)
Table[2 n! - 1, {n, 0, 25}] (* Vincenzo Librandi, Sep 30 2013 *)
A173316
a(n) = 6*n! - 1.
Original entry on oeis.org
5, 5, 11, 35, 143, 719, 4319, 30239, 241919, 2177279, 21772799, 239500799, 2874009599, 37362124799, 523069747199, 7846046207999, 125536739327999, 2134124568575999, 38414242234367999, 729870602452991999, 14597412049059839999, 306545653030256639999
Offset: 0
A173317
a(n) = 5*n! - 1.
Original entry on oeis.org
4, 4, 9, 29, 119, 599, 3599, 25199, 201599, 1814399, 18143999, 199583999, 2395007999, 31135103999, 435891455999, 6538371839999, 104613949439999, 1778437140479999, 32011868528639999, 608225502044159999
Offset: 0
A173323
a(n) = 3*n! - 1.
Original entry on oeis.org
2, 2, 5, 17, 71, 359, 2159, 15119, 120959, 1088639, 10886399, 119750399, 1437004799, 18681062399, 261534873599, 3923023103999, 62768369663999, 1067062284287999, 19207121117183999, 364935301226495999, 7298706024529919999, 153272826515128319999, 3372002183332823039999
Offset: 0
A229828
a(n) = 7*n! - 1.
Original entry on oeis.org
6, 6, 13, 41, 167, 839, 5039, 35279, 282239, 2540159, 25401599, 279417599, 3353011199, 43589145599, 610248038399, 9153720575999, 146459529215999, 2489811996671999, 44816615940095999, 851515702861823999, 17030314057236479999, 357636595201966079999
Offset: 0
-
[7*Factorial(n)-1: n in [0..25]];
-
[6] cat [n eq 1 select n+5 else n*Self(n-1)+n-1: n in [1..25] ];
-
Table[7 n! - 1, {n, 0, 25}]
A333924
Smallest prime of the form 4*k + 3 that is a divisor of 4*n! - 1.
Original entry on oeis.org
3, 3, 7, 23, 19, 479, 2879, 19, 179, 2551, 14515199, 159667199, 26246663, 47, 3007159, 85303, 43, 455999, 13099, 311369011223, 7791519641878751, 59, 50207, 149709500816123, 71, 61651424911, 1146111319366855507, 3902575987, 27963070149883187169101323, 3262754470190705587633531
Offset: 0
4*11!-1 = 159667199 that is prime of the form 4*k+3, hence a(11) = 159667199.
4*13!-1 = 24908083199 = 47 * 2963 * 178859, these 3 prime factors are all of the form 4*k+3, the smallest one is 47 hence a(13) = 47.
4*14!-1 = 348713164799 = 61 * 1901 * 3007159, only 3007159 is a prime of the form 4*k+3, hence a(14) = 3007159.
-
a[n_] := Min[Select[First /@ FactorInteger[4*n! - 1], Mod[#, 4] == 3 &]]; Array[a, 30, 0] (* Amiram Eldar, Apr 10 2020 *)
-
a(n) = {my(f=factor(4*n!-1)[,1]); for(i=1, #f, if(f[i]%4==3, return(f[i]))); } \\ Jinyuan Wang, Apr 10 2020
a(23) corrected by and more terms from
Jinyuan Wang, Apr 10 2020
Showing 1-6 of 6 results.
Comments