cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A020543 a(0) = 1, a(1) = 1, a(n+1) = (n+1)*a(n) + n.

Original entry on oeis.org

1, 1, 3, 11, 47, 239, 1439, 10079, 80639, 725759, 7257599, 79833599, 958003199, 12454041599, 174356582399, 2615348735999, 41845579775999, 711374856191999, 12804747411455999, 243290200817663999, 4865804016353279999
Offset: 0

Views

Author

Keywords

Comments

First Bernoulli polynomial evaluated at x=n! and multiplied by 2.
From Jaroslav Krizek, Jan 23 2010: (Start)
a(0) = 1, for n >= 1: a(n) = numbers m for which there is one iteration {floor(r/k)} for k = n, n-1, n-2, ... 1 with property r mod k = k-1 starting at r = m.
For n = 5: a(5) = 239;
floor(239/5) = 47, 239 mod 5 = 4;
floor( 47/4) = 11, 47 mod 4 = 3;
floor( 11/3) = 3, 11 mod 3 = 2;
floor( 3/2) = 1, 3 mod 2 = 1;
floor( 1/1) = 1, 1 mod 1 = 0. (End)
With offset 1, is the eigensequence of a triangle with the natural numbers (1, 2, 3, ...) as the right border, (1, 1, 2, 3, 4, ...) as the left border; and the rest zeros. - Gary W. Adamson, Aug 01 2016

Crossrefs

Cf. A052898(n) - 2.
Cf. sequences of the type k*n!-1: A033312 (k=1), this sequence, A173323 (k=3), A173321 (k=4), A173317 (k=5), A173316 (k=6).

Programs

Formula

E.g.f.: (-2 + exp(x) - x*exp(x))/(1-x). - Ralf Stephan, Feb 18 2004
a(n) = 2*n! - 1. - Gary W. Adamson, Jan 07 2008
a(0) = a(1) = 1, a(n) = a(n-1) * n + (n-1) for n >= 2. - Jaroslav Krizek, Jan 23 2010
a(n) ~ 2*sqrt(2*Pi*n)*n^n/exp(n). - Ilya Gutkovskiy, Aug 02 2016

Extensions

Better description from Benoit Cloitre, Dec 29 2001

A173316 a(n) = 6*n! - 1.

Original entry on oeis.org

5, 5, 11, 35, 143, 719, 4319, 30239, 241919, 2177279, 21772799, 239500799, 2874009599, 37362124799, 523069747199, 7846046207999, 125536739327999, 2134124568575999, 38414242234367999, 729870602452991999, 14597412049059839999, 306545653030256639999
Offset: 0

Views

Author

Vincenzo Librandi, Feb 16 2010

Keywords

Crossrefs

Cf. sequences of the type k*n!-1: A033312 (k=1), A020543 (k=2), A173323 (k=3), A173321 (k=4), A173317 (k=5).

Programs

  • Magma
    [6*Factorial(n)-1: n in [0..25]]; // Vincenzo Librandi, Sep 30 2013
    
  • Magma
    [5] cat [n eq 1 select n+4 else n*Self(n-1)+n-1: n in [1..25] ]; // Vincenzo Librandi, Sep 30 2013
  • Mathematica
    Table[6 n! - 1, {n, 0, 25}] (* Vincenzo Librandi, Sep 30 2013 *)

Formula

a(0)=5, a(n) = n*a(n-1)+n-1. - Vincenzo Librandi, Sep 30 2013

A173317 a(n) = 5*n! - 1.

Original entry on oeis.org

4, 4, 9, 29, 119, 599, 3599, 25199, 201599, 1814399, 18143999, 199583999, 2395007999, 31135103999, 435891455999, 6538371839999, 104613949439999, 1778437140479999, 32011868528639999, 608225502044159999
Offset: 0

Views

Author

Vincenzo Librandi, Feb 16 2010

Keywords

Crossrefs

Cf. sequences of the type k*n!-1: A033312 (k=1), A020543 (k=2), A173323 (k=3), A173321 (k=4), this sequence, A173316 (k=6).

Programs

  • Magma
    [5*Factorial(n)-1: n in [0..25]]; // Vincenzo Librandi, Sep 30 2013
    
  • Magma
    [4] cat [n eq 1 select n+3 else n*Self(n-1)+n-1: n in [1..25] ]; // Vincenzo Librandi, Sep 30 2013
  • Mathematica
    Table[5 n! - 1, {n, 0, 25}] (* Vincenzo Librandi, Sep 30 2013 *)

Formula

a(n) = 5*A000142(n)-1.
a(0)=4, a(n) = n*a(n-1)+n-1. - Vincenzo Librandi, Sep 30 2013

Extensions

a(16) corrected from Vincenzo Librandi, Sep 30 2013

A173323 a(n) = 3*n! - 1.

Original entry on oeis.org

2, 2, 5, 17, 71, 359, 2159, 15119, 120959, 1088639, 10886399, 119750399, 1437004799, 18681062399, 261534873599, 3923023103999, 62768369663999, 1067062284287999, 19207121117183999, 364935301226495999, 7298706024529919999, 153272826515128319999, 3372002183332823039999
Offset: 0

Views

Author

Vincenzo Librandi, Feb 16 2010

Keywords

Crossrefs

Cf. sequences of the type k*n!-1: A033312 (k=1), A020543 (k=2), this sequence, A173321 (k=4), A173317 (k=5), A173316 (k=6).

Programs

Formula

a(0)=2, a(n) = n*a(n-1)+n-1. - Vincenzo Librandi, Sep 30 2013
D-finite with recurrence a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Mar 07 2022
E.g.f.: 3/(1 - x) - exp(x). - Stefano Spezia, Oct 14 2024

A229828 a(n) = 7*n! - 1.

Original entry on oeis.org

6, 6, 13, 41, 167, 839, 5039, 35279, 282239, 2540159, 25401599, 279417599, 3353011199, 43589145599, 610248038399, 9153720575999, 146459529215999, 2489811996671999, 44816615940095999, 851515702861823999, 17030314057236479999, 357636595201966079999
Offset: 0

Views

Author

Vincenzo Librandi, Sep 30 2013

Keywords

Crossrefs

Cf. sequences of the type k*n!-1: A033312 (k=1), A020543 (k=2), A173323 (k=3), A173321 (k=4), A173317 (k=5), A173316 (k=6).

Programs

  • Magma
    [7*Factorial(n)-1: n in [0..25]];
    
  • Magma
    [6] cat [n eq 1 select n+5 else n*Self(n-1)+n-1: n in [1..25] ];
  • Mathematica
    Table[7 n! - 1, {n, 0, 25}]

Formula

a(0)=6, a(n) = n*a(n-1)+n-1.

A333924 Smallest prime of the form 4*k + 3 that is a divisor of 4*n! - 1.

Original entry on oeis.org

3, 3, 7, 23, 19, 479, 2879, 19, 179, 2551, 14515199, 159667199, 26246663, 47, 3007159, 85303, 43, 455999, 13099, 311369011223, 7791519641878751, 59, 50207, 149709500816123, 71, 61651424911, 1146111319366855507, 3902575987, 27963070149883187169101323, 3262754470190705587633531
Offset: 0

Views

Author

Bernard Schott, Apr 10 2020

Keywords

Comments

Every integer equal to 4*n!-1 (A173321) has a prime factor > n of the form 4*k+3; this is one of the proofs which show that there are infinitely many primes of the form 4*k+3 (A002145).

Examples

			4*11!-1 = 159667199 that is prime of the form 4*k+3, hence a(11) = 159667199.
4*13!-1 = 24908083199 = 47 * 2963 * 178859, these 3 prime factors are all of the form 4*k+3, the smallest one is 47 hence a(13) = 47.
4*14!-1 = 348713164799 = 61 * 1901 * 3007159, only 3007159 is a prime of the form 4*k+3, hence a(14) = 3007159.
		

Crossrefs

Subsequence of A002145.

Programs

  • Mathematica
    a[n_] := Min[Select[First /@ FactorInteger[4*n! - 1], Mod[#, 4] == 3 &]]; Array[a, 30, 0] (* Amiram Eldar, Apr 10 2020 *)
  • PARI
    a(n) = {my(f=factor(4*n!-1)[,1]); for(i=1, #f, if(f[i]%4==3, return(f[i]))); } \\ Jinyuan Wang, Apr 10 2020

Extensions

a(23) corrected by and more terms from Jinyuan Wang, Apr 10 2020
Showing 1-6 of 6 results.