cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086947 Numbers k such that R(k+9) = 3.

Original entry on oeis.org

21, 291, 2991, 29991, 299991, 2999991, 29999991, 299999991, 2999999991, 29999999991, 299999999991, 2999999999991, 29999999999991, 299999999999991, 2999999999999991, 29999999999999991, 299999999999999991, 2999999999999999991, 29999999999999999991, 299999999999999999991
Offset: 1

Views

Author

Ray Chandler, Jul 24 2003

Keywords

Comments

If k is in this sequence then Reverse(k) = (2/3)*k - 2. Also A101703 is the sequence of all numbers k such that Reverse(k) = (2/3)*k - 2. So this sequence is a subsequence of A101703. - Farideh Firoozbakht, Dec 30 2004

Crossrefs

Programs

  • Magma
    [3*(10^n-3): n in [1..25] ]; // Vincenzo Librandi, Aug 22 2011
  • Mathematica
    Table[3*(10^n-3), {n, 17}]
    Table[FromDigits[PadRight[{3},n,0]],{n,2,20}]-9 (* Harvey P. Dale, Nov 27 2012 *)

Formula

a(n) = 3*(10^n - 3).
R(a(n)) = A086948(n).
From Chai Wah Wu, Aug 01 2020: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2.
G.f.: x*(60*x + 21)/((x - 1)*(10*x - 1)). (End)
From Elmo R. Oliveira, May 01 2025: (Start)
E.g.f.: 3*(2 - 3*exp(x) + exp(10*x)).
a(n) = 3*A173833(n). (End)

A105068 Number of distinct prime divisors of 10^n - 3.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 4, 1, 4, 5, 4, 2, 2, 4, 2, 2, 3, 4, 3, 4, 3, 6, 4, 3, 2, 4, 4, 5, 3, 5, 5, 4, 5, 7, 4, 5, 4, 7, 5, 4, 4, 5, 4, 3, 2, 4, 4, 2, 5, 5, 4, 4, 3, 3, 4, 2, 3, 5, 5, 6, 5, 4, 3, 3, 5, 6, 5, 5, 4, 7, 4, 3, 5, 4, 5, 5, 2, 6
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 05 2005

Keywords

Examples

			If n = 1, 2 or 3, then 10^n - 3 is prime and thus the first three terms are 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[FactorInteger[10^n - 3]], {n, 1, 50}] (* Stefan Steinerberger, Feb 21 2006 *)

Formula

a(n) = A001221(A173833(n)). - Amiram Eldar, Jan 25 2020

Extensions

More terms from Stefan Steinerberger, Feb 21 2006
More terms from Amiram Eldar, Jan 25 2020

A178769 a(n) = (5*10^n + 13)/9.

Original entry on oeis.org

2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
Offset: 0

Views

Author

Bruno Berselli, Jun 13 2010

Keywords

Crossrefs

Cf. A165246 (..17, 117, 1117,..), A173193 (..27, 227, 2227,..), A173766 (..37, 337, 3337,..), A173772 (..47, 447, 4447,..), A067275 (..67, 667, 6667,..), A002281 (..77, 777, 7777,..), A173812 (..87, 887, 8887,..), A173833 (..97, 997, 9997,..).
Cf. A093143.

Programs

  • GAP
    List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
  • Magma
    [(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
    
  • Mathematica
    CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *)
    LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
  • PARI
    vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
    

Formula

a(n)^(4*k+2) + 1 == 0 (mod 250) for n > 1, k >= 0.
G.f.: (2-15*x)/((1-x)*(1-10*x)).
a(n) - 11*a(n-1) + 10*a(n-2) = 0 (n > 1).
a(n) = a(n-1) + 5*10^(n-1) = 10*a(n-1) - 13 for n > 0.
a(n) = 1 + Sum_{i=0..n} A093143(i). - Bruno Berselli, Feb 16 2015
E.g.f.: exp(x)*(5*exp(9*x) + 13)/9. - Elmo R. Oliveira, Sep 09 2024

A086946 Numbers k such that R(k+6) = 2.

Original entry on oeis.org

14, 194, 1994, 19994, 199994, 1999994, 19999994, 199999994, 1999999994, 19999999994, 199999999994, 1999999999994, 19999999999994, 199999999999994, 1999999999999994, 19999999999999994, 199999999999999994, 1999999999999999994, 19999999999999999994, 199999999999999999994
Offset: 1

Views

Author

Ray Chandler, Jul 24 2003

Keywords

Crossrefs

Programs

Formula

a(n) = 2*(10^n - 3).
R(a(n)) = A086949(n).
From Stefano Spezia, Dec 15 2022: (Start)
O.g.f.: 2*x*(7 + 20*x)/((1 - x)*(1 - 10*x)).
E.g.f.: 2*(2 - 3*exp(x) + exp(10*x)).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)
a(n) = 2*A173833(n). - Elmo R. Oliveira, May 02 2025

A177079 a(n) = 5*(10^n - 3).

Original entry on oeis.org

35, 485, 4985, 49985, 499985, 4999985, 49999985, 499999985, 4999999985, 49999999985, 499999999985, 4999999999985, 49999999999985, 499999999999985, 4999999999999985, 49999999999999985, 499999999999999985, 4999999999999999985, 49999999999999999985, 499999999999999999985
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A173833.

Programs

Formula

From Elmo R. Oliveira, Jun 12 2025: (Start)
G.f.: 5*x*(20*x+7)/((x-1)*(10*x-1)).
E.g.f.: 5*(2 - 3*exp(x) + exp(10*x)).
a(n) = 5*A173833(n).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)

A177108 a(n) = 4*(10^n-3).

Original entry on oeis.org

28, 388, 3988, 39988, 399988, 3999988, 39999988, 399999988, 3999999988, 39999999988, 399999999988, 3999999999988, 39999999999988, 399999999999988, 3999999999999988, 39999999999999988, 399999999999999988
Offset: 1

Views

Author

Vincenzo Librandi, Nov 15 2010

Keywords

Programs

  • Magma
    [4*(10^n-3): n in [1..20]]; // Vincenzo Librandi, Jul 15 2012
  • Mathematica
    CoefficientList[Series[4*(7+20*x)/((10*x-1)*(x-1)),{x,0,40}],x] (* Vincenzo Librandi, Jul 15 2012 *)
    4(10^Range[20]-3) (* or *) LinearRecurrence[{11,-10},{28,388},20] (* Harvey P. Dale, Sep 25 2012 *)

Formula

G.f.: 4*x*(7+20*x) / ( (10*x-1)*(x-1) ). a(n)=4*A173833(n). - R. J. Mathar, Jan 06 2011
a(n) = a(n-1) +36*10^(n-1) = 10*a(n-1) +108 = 11*a(n-1) -10*a(n-2). - Vincenzo Librandi, Jul 15 2012

A240696 Prime numbers n such that replacing each digit d in the decimal expansion of n with its 9's complement produces a prime.

Original entry on oeis.org

2, 7, 97, 997, 99999999999999997
Offset: 1

Views

Author

Michel Lagneau, Apr 10 2014

Keywords

Comments

a(n) = {2} union {primes of the form 10^n - 3} = {2} union {A093172}.
Primes p such that A061601(p) is also prime.
The next term has 140 digits.

Examples

			997 is in the sequence because 997 becomes (002) = 2, which is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={};f[n_]:=Block[{a=IntegerDigits[Prime[n]],b="",k=1,l},l=Length[a];While[k
    				
Showing 1-7 of 7 results.