A013609 Triangle of coefficients in expansion of (1+2*x)^n.
1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0
Examples
Triangle begins: 1; 1, 2; 1, 4, 4; 1, 6, 12, 8; 1, 8, 24, 32, 16; 1, 10, 40, 80, 80, 32; 1, 12, 60, 160, 240, 192, 64; 1, 14, 84, 280, 560, 672, 448, 128; 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256; 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512; 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024; 1, 22, 220, 1320, 5280, 14784, 29568, 42240, 42240, 28160, 11264, 2048; 1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096; From _Peter Bala_, Apr 20 2012: (Start) The triangle can be written as the matrix product A038207*(signed version of A013609). |.1................||.1..................| |.2...1............||-1...2..............| |.4...4...1........||.1..-4...4..........| |.8..12...6...1....||-1...6...-12...8....| |16..32..24...8...1||.1..-8....24.-32..16| |..................||....................| (End)
References
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
- G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- H. J. Brothers, Pascal's Prism: Supplementary Material, PDF version.
- John Cartan, Cartan's triangle shows the relationship to the n-cube.
- R. Ehrenborg and M. Readdy, Characterization of the factorial functions of Eulerian binomial and Sheffer posets
- J. Goldman and J. Haglund, Generalized rook polynomials, J. Combin. Theory A91 (2000), 509-530, 1-rook coefficients of k rooks on the 2xn board, all heights 2.
- W. G. Harter, Representations of multidimensional symmetries in networks, J. Math. Phys., 15 (1974), 2016-2021.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- D. A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.
Crossrefs
From Johannes W. Meijer, Sep 22 2010: (Start)
Triangle sums (see the comments): A000244 (Row1); A000012 (Row2); A001045 (Kn11); A026644 (Kn12); 4*A011377 (Kn13); A000129 (Kn21); A094706 (Kn22); A099625 (Kn23); A001653 (Kn3); A007583 (Kn4); A046717 (Fi1); A007051 (Fi2); A077949 (Ca1); A008998 (Ca2); A180675 (Ca3); A092467 (Ca4); A052942 (Gi1); A008999 (Gi2); A180676 (Gi3); A180677 (Gi4); A140413 (Ze1); A180678 (Ze2); A097117 (Ze3); A055588 (Ze4).
(End)
T(2n,n) gives A059304.
Programs
-
Haskell
a013609 n = a013609_list !! n a013609_list = concat $ iterate ([1,2] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Haskell
a013609 n k = a013609_tabl !! n !! k a013609_row n = a013609_tabl !! n a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
-
Magma
[2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
-
Maple
bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
-
Mathematica
Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *) BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
-
Maxima
a(n,k):=coeff(expand((1+2*x)^n),x^k); create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
-
PARI
/* same as in A092566 but use */ steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */ /* Joerg Arndt, Jul 01 2011 */
-
Sage
flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021
Formula
G.f.: 1 / (1 - x*(1+2*y)).
T(n,k) = 2^k*binomial(n,k).
T(n,k) = 2*T(n-1,k-1) + T(n-1,k). - Jon Perry, Nov 22 2005
Row sums are 3^n = A000244(n). - Joerg Arndt, Jul 01 2011
T(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i). - Mircea Merca, Apr 28 2012
E.g.f.: exp(2*y*x + x). - Geoffrey Critzer, Nov 12 2012
Riordan array (x/(1 - x), 2*x/(1 - x)). Exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(1 + 6*x + 12*x^2/2! + 8*x^3/3!) = 1 + 8*x + 40*x^2/2! + 160*x^3/3! + 560*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), 2*x/(1 - x)). - Peter Bala, Dec 21 2014
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 3^j. - Kolosov Petro, Jan 28 2019
T(n,k) = 2*(n+1-k)*T(n,k-1)/k, T(n,0) = 1. - Alexander R. Povolotsky, Oct 08 2023
For n >= 1, GCD(T(n,1), ..., T(n,n)) = GCD(T(n,1),T(n,n)) = GCD(2*n,2^n) = A171977(n). - Pontus von Brömssen, Nov 01 2024
Comments