cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A212166 Numbers k such that the maximum exponent in its prime factorization equals the number of positive exponents (A051903(k) = A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Examples

			36 = 2^2*3^2 has 2 positive exponents in its prime factorization. The maximal exponent in its prime factorization is also 2. Therefore, 36 belongs to this sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Includes subsequences A000040, A006939, A138534, A181555, A181825.
Cf. A001221, A050326, A051903, A188654 (complement), A225230.

Programs

  • Haskell
    import Data.List (elemIndices)
    a212166 n = a212166_list !! (n-1)
    a212166_list = map (+ 1) $ elemIndices 0 a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] == Length[f]]; Select[Range[424], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) == #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) = 0; A050326(a(n)) = 1. - Reinhard Zumkeller, May 03 2013

A181822 a(n) = member of A025487 whose prime signature is conjugate to the prime signature of A025487(n).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 60, 8, 2310, 36, 420, 24, 30030, 180, 4620, 120, 510510, 1260, 72, 60060, 16, 900, 840, 9699690, 13860, 360, 1021020, 48, 6300, 9240, 223092870, 180180, 2520, 19399380, 240, 69300, 216, 120120, 6469693230, 1800, 3063060, 144, 44100, 27720, 446185740, 1680, 900900, 1080, 2042040, 200560490130, 12600, 58198140, 32, 720
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

A permutation of the members of A025487.
If integers m and n have conjugate prime signatures, then A001222(m) = A001222(n), A071625(m) = A071625(n), A085082(m) = A085082(n), and A181796(m) = A181796(n).

Examples

			A025487(5) = 8 = 2^3 has a prime signature of (3). The partition that is conjugate to (3) is (1,1,1), and the member of A025487 with that prime signature is 30 = 2*3*5 (or 2^1*3^1*5^1).  Therefore, a(5) = 30.
		

Crossrefs

Other rearrangements of A025487 include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821.
A181825 lists members of A025487 with self-conjugate prime signatures. See also A181823-A181824, A181826-A181827.

Programs

  • Mathematica
    f[n_] := Block[{ww, dec}, dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 + Length@ NestWhileList[NextPrime@ # &, 1, Times @@ {##} <= n &, All] ]; {{{0}}}~Join~Map[Block[{w = #, k = 1}, Sort@ Apply[Join, {{ConstantArray[1, Length@ w]}, If[Length@ # == 0, #, #[[1]]] }] &@ Reap[Do[If[# <= n, Sow[w]; k = 1, If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; Sort[Map[{Times @@ MapIndexed[Prime[First@ #2]^#1 &, #], Times @@ MapIndexed[Prime[First@ #2]^#1 &, Table[LengthWhile[#1, # >= j &], {j, #2}]] & @@ {#, Max[#]}} &, Join @@ f[2310]]][[All, -1]] (* Michael De Vlieger, Oct 16 2018 *)
  • PARI
    partitionConj(v)=vector(v[1],i,sum(j=1,#v,v[j]>=i))
    primeSignature(n)=vecsort(factor(n)[,2]~,,4)
    f(n)=if(n==1, return(1)); my(e=partitionConj(primeSignature(n))~); factorback(concat(Mat(primes(#e)~),e))
    A025487=[2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768];
    concat(1, apply(f, A025487)) \\ Charles R Greathouse IV, Jun 02 2016

Formula

If A025487(n) = Product p(i)^e(i), then a(n) = Product A002110(e(i)). I.e., a(n) = A108951(A181819(A025487(n))). a(n) also equals A108951(A181820(n)).

A181824 Members of A025487 such that A025487(n) <= A181822(n).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 360, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1080, 1152, 1296, 1440, 1536, 1680, 1728, 1920, 2048, 2160, 2304, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4096
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Crossrefs

A181826 Members of A025487 such that A025487(n) >= A181822(n).

Original entry on oeis.org

1, 2, 6, 12, 30, 36, 60, 120, 180, 210, 360, 420, 840, 900, 1260, 1680, 1800, 2310, 2520, 4620, 5040, 5400, 6300, 7560, 9240, 12600, 13860, 18480, 25200, 27000, 27720, 30030, 36960, 37800, 44100, 55440, 60060, 69300, 75600, 83160, 88200, 110880, 120120
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Comments

Includes all members of A003418, A051451 and A129912.

Crossrefs

Formula

Union of A181825 and A181827.

A181823 Members of A025487 such that A025487(n) < A181822(n).

Original entry on oeis.org

4, 8, 16, 24, 32, 48, 64, 72, 96, 128, 144, 192, 216, 240, 256, 288, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1080, 1152, 1296, 1440, 1536, 1728, 1920, 2048, 2160, 2304, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4096, 4320, 4608, 5184, 5760, 6144, 6480
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Examples

			A025487(5) = 8 and A181822(5) = 30 have the prime signatures (3) and (1,1,1) respectively. 8 is the smaller member of the pair and is therefore included in this sequence.
		

Crossrefs

A181827 Members of A025487 such that A025487(n) > A181822(n).

Original entry on oeis.org

6, 30, 60, 180, 210, 420, 840, 900, 1260, 1800, 2310, 2520, 4620, 6300, 7560, 9240, 12600, 13860, 18480, 25200, 27720, 30030, 37800, 44100, 55440, 60060, 69300, 83160, 88200, 120120, 138600, 166320, 176400, 180180, 189000, 240240, 264600, 277200
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Examples

			A025487(9) = 30 and A181822(9) = 8 have the prime signatures (1,1,1) and (3) respectively. 30 is the larger member of the pair and is therefore included in this sequence.
		

Crossrefs

A384084 Numbers whose prime signatures are self-conjugate.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Hal M. Switkay, May 18 2025

Keywords

Comments

The implied partition corresponding to k is the partition of bigomega(k) (A001222) formed by the prime exponents. For example, bigomega(18) = 3, which is partitioned as 2 + 1, because 18 = (3^2)(2^1), and 2 + 1 is a self-conjugate partition of 3. In contrast, while bigomega(42) = 3, 3 is partitioned as 1 + 1 + 1, because 42 = (2^1)(3^1)(7^1), and 1 + 1 + 1 is not a self-conjugate partition of 3.
This sequence is very similar to, but ultimately different from, A212166. The first difference is a(342) = 1083, whereas A212166(342) = 1080.
This sequence is a subsequence of A212166.
It includes 1 (empty partition) and all primes (A000040: partition 1), as well as numbers of the form (p^2)q, where p and q are distinct primes (A054753: partition 2 + 1).
k is a term in this sequence if and only if A046523(k) is a term in A181825.

Examples

			120 is a term; its prime factorization (2^3)(3^2)(5^1) is self-conjugate.
24 is not a term; its prime factorization (2^3)(3^1) is not self-conjugate.
		

Crossrefs

Programs

  • Mathematica
    selfQ[p_] := ResourceFunction["ConjugatePartition"][p] == p; q[n_] := selfQ[Sort[FactorInteger[n][[;;, 2]], Greater]]; Select[Range[200], q] (* Amiram Eldar, May 26 2025 *)

A212169 List of highly composite numbers (A002182) with an exponent in its prime factorization that is at least as great as the number of positive exponents; intersection of A002182 and A212165.

Original entry on oeis.org

1, 2, 4, 12, 24, 36, 48, 120, 240, 360, 720, 1680, 5040, 10080, 15120, 20160, 25200, 45360, 50400, 110880, 221760, 332640, 554400, 665280, 2882880, 8648640, 14414400, 17297280, 43243200, 294053760
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Sequence can be used to find the largest highly composite number in subsequences of A212165 (of which there are several in the database).
Ramanujan showed that, in the canonical prime factorization of a highly composite number with largest prime factor prime(n), the largest exponent cannot exceed 2*log_2(prime(n+1)). (See formula 54 on page 15 of the Ramanujan paper.) This limit is less than n for all n >= 9 (and prime(n) >= 23).
1. Direct calculation verifies this for 9 <= n <= 11.
2. Nagura proved that, for any integer m >= 25, there is always a prime between m and 1.2*m. Let n = 11, at which point prime(11) = 31 and log_2(prime(n+1)) = log 37/log 2 = 5.209453.... Since log 1.2/log 2 is only 0.263034..., it follows that n must increase by at least 3k before 2*log_2(prime(n+1)) can increase by 2k, for all values of k. Therefore, 2*log_2(prime(n+1)) can never catch up to prime(n) for n > 11.
665280 = 2^6*3^3*5*7*11 is the largest highly composite number whose prime factorization contains an exponent that is strictly greater than the number of positive exponents in that factorization (including the implied 1's).

Examples

			A002182(62) = 294053760 = 2^7*3^3*5*7*11*13*17 has 7 positive exponents in its prime factorization, including 5 implied 1's. The maximal exponent in its prime factorization is also 7. Therefore, 294053760 is a term of this sequence.
		

References

  • S. Ramanujan, Highly composite numbers, Proc. Lond. Math. Soc. 14 (1915), 347-409; reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] >= Length[f]]; a = 0; t = {}; Do[b = DivisorSigma[0, n]; If[b > a, a = b; If[okQ[n], AppendTo[t, n]]], {n, 10^6}]; t (* T. D. Noe, May 24 2012 *)

A330781 Numbers m that have recursively self-conjugate prime signatures.

Original entry on oeis.org

1, 2, 12, 36, 360, 27000, 75600, 378000, 1587600, 174636000, 1944810000, 5762988000, 42785820000, 5244319080000, 36710233560000, 1431699108840000, 65774855015100000, 731189187729000000, 1710146230392600000, 2677277333530800000, 2267653901500587600000, 115650348976529967600000
Offset: 1

Views

Author

Michael De Vlieger, Jan 02 2020

Keywords

Comments

Let m be a product of a primorial, listed by A025487.
Consider the standard form prime power decomposition of m = Product(p^e), where prime p | m (listed from smallest to largest p), and e is the largest multiplicity of p such that p^e | m (which we shall hereinafter simply call "multiplicity").
Products of primorials have a list L of multiplicities in a strictly decreasing arrangement.
A recursively self-conjugate L has a conjugate L* = L. Further, elimination of the Durfee square and leg (conjugate with the arm) to leave the arm L_1. L_1 likewise has conjugate L_1* = L_1. We continue taking the arm, eliminating the new Durfee square and leg in this manner until the entire list L is processed and all arms are self-conjugate.
a(n) is a subsequence of A181825 (m with self-conjugate prime signatures).
Subsequences of a(n) include A006939 and A181555.
This sequence can be produced by a similar algorithm that pertains to recursively self-conjugate integer partitions at A322156.
From Michael De Vlieger, Jan 16 2020: (Start)
2 is the only prime in a(n).
The smallest 2 terms of a(n) are primorials, i.e., in A002110.
The smallest 5 terms of a(n) are highly composite, i.e., in A002182. (End)

Examples

			A025487(1) = 1, the empty product, is in the sequence since it is the product of no primes at all; this null sequence is self-conjugate.
A025487(2) = 2 = 2^1 -> {1} is self conjugate.
A025487(6) = 12 = 2^2 * 3 -> {2, 1} is self conjugate.
A025487(32) = 360 = 2^3 * 3^2 * 5 -> {3, 2, 1} is self-conjugate.
Graphing the multiplicities, we have:
3  x           3  x
2  x x   ==>   2  x x
1  x x x       1  x x x
   2 3 5          2 3 5
where the vertical axis represents multiplicity and the horizontal the k-th prime p, and the arrow represents the transposition of the x's in the graph. We see that the transposition does not change the prime signature (thus, m is also in A181825), and additionally, the prime signature is recursively self-conjugate.
		

Crossrefs

Programs

  • Mathematica
    Block[{n = 6, f, g}, f[n_] := Block[{w = {n}, c}, c[x_] := Apply[Times, Most@ x - Reverse@ Accumulate@ Reverse@ Rest@ x]; Reap[Do[Which[And[Length@ w == 2, SameQ @@ w], Sow[w]; Break[], Length@ w == 1, Sow[w]; AppendTo[w, 1], c[w] > 0, Sow[w]; AppendTo[w, 1], True, Sow[w]; w = MapAt[1 + # &, Drop[w, -1], -1]], {i, Infinity}] ][[-1, 1]] ]; g[w_] := Block[{k}, k = Total@ w; Total@ Map[Apply[Function[{s, t}, s Array[Boole[t <= # <= s + t - 1] &, k] ], #] &, Apply[Join, Prepend[Table[Function[{v, c}, Map[{w[[k]], # + 1} &, Map[Total[v #] &, Tuples[{0, 1}, {Length@ v}]]]] @@ {Most@ #, ConstantArray[1, Length@ # - 1]} &@ Take[w, k], {k, 2, Length@ w}], {{w[[1]], 1}}]]] ]; {1}~Join~Take[#, FirstPosition[#, StringJoin["{", ToString[n], "}"]][[1]] ][[All, 1]] &@ Sort[MapIndexed[{Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #2], ToString@ #1} & @@ {#1, g[#1], First@ #2} &, Apply[Join, Array[f[#] &, n] ] ] ] ]
    (* Second program: decompress dataset of a(n) for n = 0..75047 *)
    {1}~Join~Map[Block[{k, w = ToExpression@ StringSplit[#, " "]}, k = Total@ w; Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Total@ #] &@ Map[Apply[Function[{s, t}, s Array[Boole[t <= # <= s + t - 1] &, k] ], #] &, Apply[Join, Prepend[Table[Function[{v, c}, Map[{w[[k]], # + 1} &, Map[Total[v #] &, Tuples[{0, 1}, {Length@ v}]]]] @@ {Most@ #, ConstantArray[1, Length@ # - 1]} &@ Take[w, k], {k, 2, Length@ w}], {{w[[1]], 1}}]]] ] &, Import["https://oeis.org/A330781/a330781.txt", "Data"] ] (* Michael De Vlieger, Jan 16 2020 *)
Showing 1-10 of 10 results.