cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A181822 a(n) = member of A025487 whose prime signature is conjugate to the prime signature of A025487(n).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 60, 8, 2310, 36, 420, 24, 30030, 180, 4620, 120, 510510, 1260, 72, 60060, 16, 900, 840, 9699690, 13860, 360, 1021020, 48, 6300, 9240, 223092870, 180180, 2520, 19399380, 240, 69300, 216, 120120, 6469693230, 1800, 3063060, 144, 44100, 27720, 446185740, 1680, 900900, 1080, 2042040, 200560490130, 12600, 58198140, 32, 720
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

A permutation of the members of A025487.
If integers m and n have conjugate prime signatures, then A001222(m) = A001222(n), A071625(m) = A071625(n), A085082(m) = A085082(n), and A181796(m) = A181796(n).

Examples

			A025487(5) = 8 = 2^3 has a prime signature of (3). The partition that is conjugate to (3) is (1,1,1), and the member of A025487 with that prime signature is 30 = 2*3*5 (or 2^1*3^1*5^1).  Therefore, a(5) = 30.
		

Crossrefs

Other rearrangements of A025487 include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821.
A181825 lists members of A025487 with self-conjugate prime signatures. See also A181823-A181824, A181826-A181827.

Programs

  • Mathematica
    f[n_] := Block[{ww, dec}, dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 + Length@ NestWhileList[NextPrime@ # &, 1, Times @@ {##} <= n &, All] ]; {{{0}}}~Join~Map[Block[{w = #, k = 1}, Sort@ Apply[Join, {{ConstantArray[1, Length@ w]}, If[Length@ # == 0, #, #[[1]]] }] &@ Reap[Do[If[# <= n, Sow[w]; k = 1, If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; Sort[Map[{Times @@ MapIndexed[Prime[First@ #2]^#1 &, #], Times @@ MapIndexed[Prime[First@ #2]^#1 &, Table[LengthWhile[#1, # >= j &], {j, #2}]] & @@ {#, Max[#]}} &, Join @@ f[2310]]][[All, -1]] (* Michael De Vlieger, Oct 16 2018 *)
  • PARI
    partitionConj(v)=vector(v[1],i,sum(j=1,#v,v[j]>=i))
    primeSignature(n)=vecsort(factor(n)[,2]~,,4)
    f(n)=if(n==1, return(1)); my(e=partitionConj(primeSignature(n))~); factorback(concat(Mat(primes(#e)~),e))
    A025487=[2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768];
    concat(1, apply(f, A025487)) \\ Charles R Greathouse IV, Jun 02 2016

Formula

If A025487(n) = Product p(i)^e(i), then a(n) = Product A002110(e(i)). I.e., a(n) = A108951(A181819(A025487(n))). a(n) also equals A108951(A181820(n)).

A212167 Numbers k such that the maximum exponent in its prime factorization is not greater than the number of positive exponents (A051903(k) <= A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212166 and A212168. Includes numerous subsequences that are subsequences of neither A212166 nor A212168.

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although the 1 is often left implicit).  2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 does not belong to the sequence. But 10 = 2^1*5^1 and 20 = 2^2*5^1 belong, since the maximal exponents in their prime factorizations are 1 and 2 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212164. See also A212165.
Subsequences (none of which are subsequences of A212166 or A212168) include A002110, A051451, A129912, A179983, A181826, A181827, A182862, A182863. Includes all members of A003418.

Programs

  • Haskell
    import Data.List (findIndices)
    a212167 n = a212167_list !! (n-1)
    a212167_list = map (+ 1) $ findIndices (>= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Maple
    isA212167 := proc(n)
        simplify(A051903(n) <= A001221(n)) ;
    end proc:
    for n from 1 to 1000 do
        if isA212167(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 06 2021
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] <= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) <= #e; } \\ Amiram Eldar, Sep 09 2024

Formula

A225230(a(n)) >= 0; A050326(a(n)) > 0. - Reinhard Zumkeller, May 03 2013

A181824 Members of A025487 such that A025487(n) <= A181822(n).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 360, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1080, 1152, 1296, 1440, 1536, 1680, 1728, 1920, 2048, 2160, 2304, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4096
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Crossrefs

A181825 Members of A025487 whose prime signature is self-conjugate (as a partition).

Original entry on oeis.org

1, 2, 12, 36, 120, 360, 1680, 5040, 5400, 27000, 36960, 75600, 110880, 378000, 960960, 1587600, 1663200, 2882880, 7938000, 8316000, 32672640, 34927200, 43243200, 98017920, 174636000, 216216000, 277830000, 908107200, 1152597600, 1241560320, 1470268800, 1944810000
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Comments

A025487(n) is included iff A025487(n) = A181822(n).
Closed under the binary operations of GCD and LCM, since a self-conjugate partition of Omega(a(n)) (which the prime signature of these numbers is) is the concatenation of self-conjugate hooks of decreasing size while moving downward and to the right in the Ferrers diagram, and the GCD (or LCM) of two terms a(i) and a(j) is obtained by taking the smaller (or larger, respectively) of the corresponding hooks. For example, GCD(a(8),a(11)) = GCD(5040,36960) = 1680 = a(7), and LCM(a(8),a(11)) = 110880 = a(13). The two binary operations make the set {a(n)} into a lattice order. - Richard Peterson, May 29 2020

Examples

			A025487(11) = 36 = 2^2*3^2 has a prime signature of (2,2), which is a self-conjugate partition; hence, 36 is included in the sequence.
		

Crossrefs

Includes subsequences A006939 and A181555.

Programs

Extensions

a(18)-a(32) from Amiram Eldar, Jan 19 2019

A181823 Members of A025487 such that A025487(n) < A181822(n).

Original entry on oeis.org

4, 8, 16, 24, 32, 48, 64, 72, 96, 128, 144, 192, 216, 240, 256, 288, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1080, 1152, 1296, 1440, 1536, 1728, 1920, 2048, 2160, 2304, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4096, 4320, 4608, 5184, 5760, 6144, 6480
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Examples

			A025487(5) = 8 and A181822(5) = 30 have the prime signatures (3) and (1,1,1) respectively. 8 is the smaller member of the pair and is therefore included in this sequence.
		

Crossrefs

A181827 Members of A025487 such that A025487(n) > A181822(n).

Original entry on oeis.org

6, 30, 60, 180, 210, 420, 840, 900, 1260, 1800, 2310, 2520, 4620, 6300, 7560, 9240, 12600, 13860, 18480, 25200, 27720, 30030, 37800, 44100, 55440, 60060, 69300, 83160, 88200, 120120, 138600, 166320, 176400, 180180, 189000, 240240, 264600, 277200
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Examples

			A025487(9) = 30 and A181822(9) = 8 have the prime signatures (1,1,1) and (3) respectively. 30 is the larger member of the pair and is therefore included in this sequence.
		

Crossrefs

A182862 Numbers k that set a record for the number of distinct prime signatures represented among their unitary divisors.

Original entry on oeis.org

1, 2, 6, 12, 60, 360, 1260, 2520, 27720, 138600, 360360, 831600, 10810800, 75675600, 183783600, 1286485200, 24443218800, 38594556000, 424540116000, 733296564000, 8066262204000, 185524030692000, 1693915062840000, 5380196890068000, 38960046445320000, 166786103592108000
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

In other words, the sequence includes k iff A182860(k) > A182860(m) for all m < k.
The records for the number of distinct prime signatures are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 60, 64, 72, 80, 96, ... (see the link for more values). - Amiram Eldar, Jul 07 2019

Examples

			60 has 8 unitary divisors (1, 3, 4, 5, 12, 15, 20 and 60). Primes 3 and 5 have the same prime signature, as do 12 (2^2*3) and 20 (2^2*5); each of the other four numbers listed is the only unitary divisor of 60 with its particular prime signature.  This makes a total of 6 distinct prime signatures that appear among the unitary divisors of 60.  Since no positive integer smaller than 60 has more than 4 distinct prime signatures appearing among its unitary divisors, 60 belongs to this sequence.
		

Crossrefs

Subsequence of A025487, A129912, A181826, A182863. See also A034444, A085082, A182860, A182861.

Programs

  • Mathematica
    f[1] = 1; f[n_] := Times @@ (Values[Counts[FactorInteger[n][[;; , 2]]]] + 1); fm = 0; s={}; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 1, 10^6}]; s (* Amiram Eldar, Jan 19 2019 *)

Extensions

a(14)-a(26) from Amiram Eldar, Jan 19 2019

A182863 Members m of A025487 such that, if k appears in m's prime signature, k-1 appears at least as often as k (for any integer k > 1).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 210, 360, 420, 1260, 2310, 2520, 4620, 13860, 27720, 30030, 60060, 75600, 138600, 180180, 360360, 510510, 831600, 900900, 1021020, 1801800, 3063060, 6126120, 9699690, 10810800, 15315300, 19399380, 30630600, 37837800
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

Members m of A025487 such that A181819(m) is also a member of A025487.
If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A181818.
Also the least number with each sorted prime metasignature, where a number's metasignature is the sequence of multiplicities of exponents in its prime factorization. For example, 2520 has prime indices {1,1,1,2,2,3,4}, sorted prime signature {1,1,2,3}, and sorted prime metasignature {1,1,2}. - Gus Wiseman, May 21 2022

Examples

			The prime signature of 360360 = 2^3*3^2*5*7*11*13 is (3,2,1,1,1,1). 2 appears as many times as 3 in 360360's prime signature, and 1 appears more times than 2. Since 360360 is also a member of A025487, it is a member of this sequence.
From _Gus Wiseman_, May 21 2022: (Start)
The terms together with their sorted prime signatures and sorted prime metasignatures begin:
      1: {}                -> {}            -> {}
      2: {1}               -> {1}           -> {1}
      6: {1,2}             -> {1,1}         -> {2}
     12: {1,1,2}           -> {1,2}         -> {1,1}
     30: {1,2,3}           -> {1,1,1}       -> {3}
     60: {1,1,2,3}         -> {1,1,2}       -> {1,2}
    210: {1,2,3,4}         -> {1,1,1,1}     -> {4}
    360: {1,1,1,2,2,3}     -> {1,2,3}       -> {1,1,1}
    420: {1,1,2,3,4}       -> {1,1,1,2}     -> {1,3}
   1260: {1,1,2,2,3,4}     -> {1,1,2,2}     -> {2,2}
   2310: {1,2,3,4,5}       -> {1,1,1,1,1}   -> {5}
   2520: {1,1,1,2,2,3,4}   -> {1,1,2,3}     -> {1,1,2}
   4620: {1,1,2,3,4,5}     -> {1,1,1,1,2}   -> {1,4}
  13860: {1,1,2,2,3,4,5}   -> {1,1,1,2,2}   -> {2,3}
  27720: {1,1,1,2,2,3,4,5} -> {1,1,1,2,3}   -> {1,1,3}
  30030: {1,2,3,4,5,6}     -> {1,1,1,1,1,1} -> {6}
  60060: {1,1,2,3,4,5,6}   -> {1,1,1,1,1,2} -> {1,5}
(End)
		

Crossrefs

Intersection of A025487 and A179983.
Subsequence of A129912 and A181826.
Includes all members of A182862.
Positions of first appearances in A353742, unordered version A238747.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A005361 gives product of prime signature, firsts A353500 (sorted A085629).
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A182850 gives frequency depth of prime indices, counted by A225485.
A323014 gives adjusted frequency depth of prime indices, counted by A325280.

Programs

  • Mathematica
    nn=1000;
    r=Table[Sort[Length/@Split[Sort[Last/@If[n==1,{},FactorInteger[n]]]]],{n,nn}];
    Select[Range[nn],!MemberQ[Take[r,#-1],r[[#]]]&] (* Gus Wiseman, May 21 2022 *)

A195307 Where records occur in A129308 and also in A195155.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 360, 420, 840, 1260, 2520, 5040, 13860, 27720, 55440, 83160, 166320, 277200, 360360, 720720, 1081080, 2162160, 2827440, 4324320, 6126120, 12252240, 24504480, 36756720, 73513440, 147026880, 183783600, 232792560, 367567200, 465585120, 698377680
Offset: 1

Views

Author

Omar E. Pol, Oct 16 2011

Keywords

Comments

Observation: a(n) ending at 0, if 5 <= n <= 24 and possibly more.
From David A. Corneth, Apr 14 2021: (Start)
Conjecture: for each term k > 1 in the sequence there exists prime p such that k/p is in the sequence.
From the first 35 terms only a(23) = 2827440 is not in A025487.
In the list of conjectured terms, if actual terms <= 10^16 are 97-smooth and have the following property: a(n+1) = a(n) + k*gcd(a(n), a(n-1), ..., a(n-20)) setting a(n) = 1 for n < 1 then those terms are actual terms.
The conjectured terms are 41-smooth and satisfy a(n+1) = a(n) + k*gcd(a(n), a(n-1), ..., a(n-13)). (End)
From Bernard Schott, Jul 30 2022: (Start)
Equivalently, integers whose number of oblong divisors (A129308) sets a new record.
Corresponding records of number of oblong divisors are 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ... (End)

Examples

			a(4) = 12 is in the sequence because A129308(12) = 3 is larger than any earlier value in A129308. - _Bernard Schott_, Jul 30 2022
		

Crossrefs

Extensions

More terms a(6)-a(24) from Alois P. Heinz, Oct 16 2011
a(25)-a(35) from David A. Corneth, Apr 14 2021
Showing 1-10 of 10 results.