cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A181824 Members of A025487 such that A025487(n) <= A181822(n).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 360, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1080, 1152, 1296, 1440, 1536, 1680, 1728, 1920, 2048, 2160, 2304, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4096
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Crossrefs

A181826 Members of A025487 such that A025487(n) >= A181822(n).

Original entry on oeis.org

1, 2, 6, 12, 30, 36, 60, 120, 180, 210, 360, 420, 840, 900, 1260, 1680, 1800, 2310, 2520, 4620, 5040, 5400, 6300, 7560, 9240, 12600, 13860, 18480, 25200, 27000, 27720, 30030, 36960, 37800, 44100, 55440, 60060, 69300, 75600, 83160, 88200, 110880, 120120
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Comments

Includes all members of A003418, A051451 and A129912.

Crossrefs

Formula

Union of A181825 and A181827.

A181823 Members of A025487 such that A025487(n) < A181822(n).

Original entry on oeis.org

4, 8, 16, 24, 32, 48, 64, 72, 96, 128, 144, 192, 216, 240, 256, 288, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1080, 1152, 1296, 1440, 1536, 1728, 1920, 2048, 2160, 2304, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4096, 4320, 4608, 5184, 5760, 6144, 6480
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Examples

			A025487(5) = 8 and A181822(5) = 30 have the prime signatures (3) and (1,1,1) respectively. 8 is the smaller member of the pair and is therefore included in this sequence.
		

Crossrefs

A181827 Members of A025487 such that A025487(n) > A181822(n).

Original entry on oeis.org

6, 30, 60, 180, 210, 420, 840, 900, 1260, 1800, 2310, 2520, 4620, 6300, 7560, 9240, 12600, 13860, 18480, 25200, 27720, 30030, 37800, 44100, 55440, 60060, 69300, 83160, 88200, 120120, 138600, 166320, 176400, 180180, 189000, 240240, 264600, 277200
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Examples

			A025487(9) = 30 and A181822(9) = 8 have the prime signatures (1,1,1) and (3) respectively. 30 is the larger member of the pair and is therefore included in this sequence.
		

Crossrefs

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A046523 Smallest number with same prime signature as n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 12, 2, 6, 6, 16, 2, 12, 2, 12, 6, 6, 2, 24, 4, 6, 8, 12, 2, 30, 2, 32, 6, 6, 6, 36, 2, 6, 6, 24, 2, 30, 2, 12, 12, 6, 2, 48, 4, 12, 6, 12, 2, 24, 6, 24, 6, 6, 2, 60, 2, 6, 12, 64, 6, 30, 2, 12, 6, 30, 2, 72, 2, 6, 12, 12, 6, 30, 2, 48, 16, 6, 2, 60, 6, 6, 6, 24, 2
Offset: 1

Views

Author

Keywords

Examples

			If p,q,... are different primes, a(p)=2, a(p^2)=4, a(pq)=6, a(p^2*q)=12, etc.
n = 108 = 2*2*3*3*3 is replaced by a(n) = 2*2*2*3*3 = 72;
n = 105875 = 5*5*5*7*11*11 is represented by a(n) = 2*2*2*3*3*5 = 360.
Prime-powers are replaced by corresponding powers of 2, primes by 2.
Factorials, primorials and lcm[1..n] are in the sequence.
A000005(a(n)) = A000005(n) remains invariant; least and largest prime factors of a(n) are 2 or p[A001221(n)] resp.
		

Crossrefs

A025487 gives range of values of this sequence.

Programs

  • Haskell
    import Data.List (sort)
    a046523 = product .
              zipWith (^) a000040_list . reverse . sort . a124010_row
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    a:= n-> (l-> mul(ithprime(i)^l[i][2], i=1..nops(l)))
            (sort(ifactors(n)[2], (x, y)->x[2]>y[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 18 2014
  • Mathematica
    Table[Apply[Times, p[w]^Reverse[Sort[ex[w]]]], {w, 1, 1000}] p[x_] := Table[Prime[w], {w, 1, lf[x]}] ex[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]]
    ps[n_] := Sort[Last /@ FactorInteger[n]]; Join[{1}, Table[i = 2; While[ps[n] != ps[i], i++]; i, {n, 2, 89}]] (* Jayanta Basu, Jun 27 2013 *)
  • PARI
    a(n)=my(f=vecsort(factor(n)[,2],,4),p);prod(i=1,#f,(p=nextprime(p+1))^f[i]) \\ Charles R Greathouse IV, Aug 17 2011
    
  • PARI
    A046523(n)=factorback(primes(#n=vecsort(factor(n)[,2],,4)),n) \\ M. F. Hasler, Oct 12 2018, improved Jul 18 2019
    
  • Python
    from sympy import factorint
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1 # Indranil Ghosh, May 05 2017
    
  • Python
    from math import prod
    from sympy import factorint, prime
    def A046523(n): return prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n).values(),reverse=True))) # Chai Wah Wu, Feb 04 2022

Formula

In prime factorization of n, replace most common prime by 2, next most common by 3, etc.
a(n) = A124859(A124859(n)) = A181822(A124859(n)). - Matthew Vandermast, May 19 2012
a(n) = A181821(A181819(n)). - Alois P. Heinz, Feb 17 2020

Extensions

Corrected and extended by Ray Chandler, Mar 11 2004

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A181821 a(n) = smallest integer with factorization as Product p(i)^e(i) such that Product p(e(i)) = n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 30, 36, 24, 32, 60, 64, 48, 72, 210, 128, 180, 256, 120, 144, 96, 512, 420, 216, 192, 900, 240, 1024, 360, 2048, 2310, 288, 384, 432, 1260, 4096, 768, 576, 840, 8192, 720, 16384, 480, 1800, 1536, 32768, 4620, 1296, 1080, 1152, 960, 65536
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

A permutation of A025487. a(n) is the member m of A025487 such that A181819(m) = n. a(n) is also the member of A025487 whose prime signature is conjugate to the prime signature of A108951(n).
If n = Product_i prime(e(i)) with the e(i) weakly decreasing, then a(n) = Product_i prime(i)^e(i). For example, 90 = prime(3) * prime(2) * prime(2) * prime(1), so a(90) = prime(1)^3 * prime(2)^2 * prime(3)^2 * prime(4)^1 = 12600. - Gus Wiseman, Jan 02 2019

Examples

			The canonical factorization of 24 is 2^3*3^1. Therefore, p(e(i)) = prime(3)*prime(1)(i.e., A000040(3)*A000040(1)), which equals 5*2 = 10. Since 24 is the smallest integer for which p(e(i)) = 10, a(10) = 24.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(sort(map(i->
                 numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 05 2018
  • Mathematica
    With[{s = Array[If[# == 1, 1, Times @@ Map[Prime@ Last@ # &, FactorInteger@ #]] &, 2^16]}, Array[First@ FirstPosition[s, #] &, LengthWhile[Differences@ Union@ s, # == 1 &]]] (* Michael De Vlieger, Dec 17 2018 *)
    Table[Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,30}] (* Gus Wiseman, Jan 02 2019 *)
  • PARI
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); }; \\ Antti Karttunen, Dec 10 2018
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A181821(n): return prod(prime(i)**e for i, e in enumerate(sorted(map(primepi,factorint(n,multiple=True)),reverse=True),1)) # Chai Wah Wu, Sep 15 2023

Formula

If A108951(n) = Product p(i)^e(i), then a(n) = Product A002110(e(i)). I.e., a(n) = A108951(A181819(A108951(n))).
a(A181819(n)) = A046523(n). - [See also A124859]. Antti Karttunen, Dec 10 2018
a(n) = A025487(A361808(n)). - Pontus von Brömssen, Mar 25 2023
a(n) = A108951(A122111(n)). - Antti Karttunen, Sep 15 2023

Extensions

Definition corrected by Gus Wiseman, Jan 02 2019

A061394 Number of distinct prime factors of n-th least prime signature (A025487); also a(n)-th prime is largest prime factor of n-th least prime signature; also a(n)-th primorial number is largest primorial factor of n-th least product of primorial numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 3, 2, 4, 2, 3, 1, 2, 3, 2, 4, 2, 3, 1, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 4, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 5, 4, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 5, 4, 2, 3, 3, 2, 4, 3, 4, 2, 3, 4, 3, 2, 1, 3, 2, 5, 4, 2, 3, 3, 2, 4, 3, 4, 2, 5, 3, 4, 3, 2, 1, 3, 2, 5, 4, 2, 3, 3
Offset: 1

Views

Author

Henry Bottomley, Apr 30 2001

Keywords

Comments

A002110(a(n)) = A247451(n). - Reinhard Zumkeller, Sep 17 2014
Number of parts of the associated prime signature. - Álvar Ibeas, Nov 01 2014

Crossrefs

Cf. A002110, A247451, A006530, A061395, A025487, A000040, A051903. A001221 by prime signature.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a061394 = fromJust . (`elemIndex` a002110_list) . a247451
    -- Reinhard Zumkeller, Sep 17 2014
    
  • PARI
    isA025487(n)=my(k=valuation(n, 2), t); n>>=k; forprime(p=3, default(primelimit), t=valuation(n, p); if(t>k, return(0), k=t); if(k, n/=p^k, return(n==1)))
    [omega(n) | n <- [1..1000], isA025487(n)]
    \\ Or, for older versions:
    apply(omega, select(isA025487, [1..1000])) \\ Charles R Greathouse IV, Nov 07 2014

Formula

a(n) = A061395(A025487(n)) = A001221(A025487(n)) = A051903(A181822(n)).
A000040(a(n)) = A006530(A025487(n)).

Extensions

Offset updated by Matthew Vandermast, Nov 08 2008

A322827 A permutation of A025487: Sequence of least representatives of distinct prime signatures obtained from the run lengths present in the binary expansion of n.

Original entry on oeis.org

1, 2, 6, 4, 36, 30, 12, 8, 216, 180, 210, 900, 72, 60, 24, 16, 1296, 1080, 1260, 5400, 44100, 2310, 6300, 27000, 432, 360, 420, 1800, 144, 120, 48, 32, 7776, 6480, 7560, 32400, 264600, 13860, 37800, 162000, 9261000, 485100, 30030, 5336100, 1323000, 69300, 189000, 810000, 2592, 2160, 2520, 10800, 88200, 4620, 12600
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2019

Keywords

Comments

A101296(a(n)) gives a permutation of natural numbers.

Examples

			The sequence can be represented as a binary tree:
                                      1
                                      |
                   ...................2...................
                  6                                       4
       36......../ \........30                 12......../ \........8
       / \                 / \                 / \                 / \
      /   \               /   \               /   \               /   \
     /     \             /     \             /     \             /     \
   216      180         210    900         72       60         24       16
etc.
Both children are multiples of their common parent, see A323503, A323504 and A323507.
The value of a(n) is computed from the binary expansion of n as follows: Starting from the least significant end of the binary expansion of n (A007088), we record the successive run lengths, subtract one from all lengths except the first one, and use the reversed partial sums of these adjusted values as the exponents of successive primes.
For 11, which is "1011" in base 2, we have run lengths [2, 1, 1] when scanned from the right, and when one is subtracted from all except the first, we have [2, 0, 0], partial sums of which is [2, 2, 2], which stays same when reversed, thus a(11) = 2^2 * 3^2 * 5^2 = 900.
For 13, which is "1101" in base 2, we have run lengths [1, 1, 2] when scanned from the right, and when one is subtracted from all except the first, we have [1, 0, 1], partial sums of which is [1, 1, 2], reversed [2, 1, 1], thus a(13) = 2^2 * 3^1 * 5^1 = 60.
Sequence A227183 is based on the same algorithm.
		

Crossrefs

Cf. A000079 (right edge), A000400 (left edge, apart from 2), A005811, A046523, A101296, A227183, A322585, A322825, A323503, A323504, A323507.
Other rearrangements of A025487 include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822.
Cf. A005940, A283477, A323505 for other similar trees.

Programs

  • Mathematica
    {1}~Join~Array[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Reverse@ Accumulate@ MapIndexed[Length[#1] - Boole[First@ #2 > 1] &, Split@ Reverse@ IntegerDigits[#, 2]]] &, 54] (* Michael De Vlieger, Feb 05 2020 *)
  • PARI
    A322827(n) = if(!n,1,my(bits = Vecrev(binary(n)), rl=1, o = List([])); for(i=2,#bits,if(bits[i]==bits[i-1], rl++, listput(o,rl))); listput(o,rl); my(es=Vecrev(Vec(o)), m=1); for(i=1,#es,m *= prime(i)^es[i]); (m));

Formula

a(n) = A046523(a(n)) = A046523(A322825(n)).
A001221(a(n)) = A005811(n).
A001222(a(n)) = A227183(n).
A322585(a(n)) = 1.
Showing 1-10 of 15 results. Next