cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A184535 a(n) = floor(3/5 * n^2), with a(1)=1.

Original entry on oeis.org

1, 2, 5, 9, 15, 21, 29, 38, 48, 60, 72, 86, 101, 117, 135, 153, 173, 194, 216, 240, 264, 290, 317, 345, 375, 405, 437, 470, 504, 540, 576, 614, 653, 693, 735, 777, 821, 866, 912, 960, 1008, 1058, 1109, 1161, 1215, 1269, 1325, 1382, 1440, 1500, 1560, 1622, 1685, 1749, 1815, 1881, 1949, 2018, 2088, 2160, 2232, 2306, 2381
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Apart from the initial term this is the elliptic troublemaker sequence R_n(2,5) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences see the cross references below. - Peter Bala, Aug 08 2013

Crossrefs

Elliptic troublemaker sequences: A000212 (= R_n(1,3) = R_n(2,3)), A002620 (= R_n(1,2)), A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Programs

  • GAP
    Concatenation([1], List([2..10^3], n->Int(3/5 * n^2))); # Muniru A Asiru, Feb 04 2018
    
  • Maple
    1,seq(floor(3/5*n^2), n=2..10^3); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    p[n_] := FractionalPart[(n^3 + 5)^(1/3)]; q[n_] := Floor[1/p[n]]; Table[q[n], {n, 1, 120}]
    Join[{1},LinearRecurrence[{2, -1, 0, 0, 1, -2, 1},{2, 5, 9, 15, 21, 29, 38},62]] (* Ray Chandler, Aug 31 2015 *)
  • PARI
    a(n) = if(n==1, 1, 3*n^2\5); \\ Altug Alkan, Mar 03 2018
    
  • Python
    def A184535(n): return 3*n**2//5 if n>1 else 1 # Chai Wah Wu, Aug 04 2025

Formula

a(n) = floor(1/{(5+n^3)^(1/3)}), where {}=fractional part.
a(n)= +2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7), for n>8, with g.f. 1-x^2*(1+x)*(2*x^2-x+2)/ ((x^4+x^3+x^2+x+1) *(x-1)^3), so a(n) is (3n^2-2)/5 plus a fifth of A164116 for n>1. [Bruno Berselli, Jan 30 2011. See the following Bala's comment.]
From Peter Bala, Aug 08 2013: (Start)
a(n) = floor(3/5*n^2) for n >= 2.
The sequence b(n) := floor(3/5*n^2) - 3/5*n^2, n >= 1, is periodic with period [-3/5, -2/5, -2/5, -3/5, 0] of length 5. The generating function and recurrence equation given above easily follow from these observations.
The sequence c(n) := 5/2*( (2*n/5 - floor(2*n/5))^2 - (2*n/5 - floor(2*n/5)) ) is also periodic with period 5, and calculation shows it has the same period as the sequence b(n). Thus b(n) = c(n), yielding the alternative formula a(n) = 3/5*n^2 + 5/2*( (2*n/5 - floor(2*n/5))^2 - (2*n/5 - floor(2*n/5)) ), which is one of the formulas for the elliptic troublemaker sequence R_n(2,5) given in Stange (see Section 7, equation (21)). (End)

Extensions

Better name from Peter Bala, Aug 08 2013

A183534 Square array of generalized Ulam numbers U(n,k), n>=1, k>=2, read by antidiagonals: U(n,k) = n if n<=k; for n>k, U(n,k) = least number > U(n-1,k) which is a unique sum of k distinct terms U(i,k) with i

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 6, 6, 1, 2, 3, 4, 9, 8, 1, 2, 3, 4, 10, 10, 11, 1, 2, 3, 4, 5, 16, 11, 13, 1, 2, 3, 4, 5, 15, 17, 12, 16, 1, 2, 3, 4, 5, 6, 25, 18, 28, 18, 1, 2, 3, 4, 5, 6, 21, 26, 19, 29, 26, 1, 2, 3, 4, 5, 6, 7, 36, 27, 22, 30, 28, 1, 2, 3, 4, 5, 6, 7, 28, 37, 28, 64, 53, 36
Offset: 1

Views

Author

Keywords

Comments

The columns are Ulam-type sequences - see A002858 for further information. Some of these sequences - but not all - seem to have quite simple generating functions.
U(k+1,k) = k*(k+1)/2.
U(k+2+j,k) = k^2+j for k>=3 and 0<=j
U(2*k+2,k) = k*(3*k-1)/2 for k>=3.

Examples

			Square array U(n,k) begins:
  1,  1,  1,  1,  1,  1,  ...
  2,  2,  2,  2,  2,  2,  ...
  3,  3,  3,  3,  3,  3,  ...
  4,  6,  4,  4,  4,  4,  ...
  6,  9, 10,  5,  5,  5,  ...
  8, 10, 16, 15,  6,  6,  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i,k,h) option remember;
          local t;
          if n<0 or h<0 then 0
        elif n=0 then `if`(h=0, 1, 0)
        elif i=0 or h=0 then 0
        elif h=1 then t:= v(n, k);
                      `if`(t>0 and t<=i, 1, 0)
                 else t:= b(n -U(i, k), i-1, k, h-1);
                      t+ `if`(t>1, 0, b(n, i-1, k, h))
          fi
        end:
    v:= proc() 0 end:
    U:= proc(n,k) option remember;
          local m;
          if n<=k then v(n,k):= n
                  else for m from U(n-1, k)+1
                         while b(m, n-1, k, k)<>1 do od;
                       v(m,k):= n; m
          fi
        end:
    seq(seq(U(n, 2+d-n), n=1..d), d=1..12);
  • Mathematica
    b[n_, i_, k_, h_] := b[n, i, k, h] = Module[{t}, Which[n < 0 || h < 0, 0, n == 0, If[h == 0, 1, 0], i == 0 || h == 0, 0, h == 1, t = v[n, k]; If[t > 0 && t <= i, 1, 0], True, t = b[n-U[i, k], i-1, k, h-1]; t+If[t > 1, 0, b[n, i-1, k, h]] ] ]; v[, ] = 0; U[n_, k_] := U[n, k] = Module[{m}, If[n <= k, v[n, k] = n, For[m = U[n-1, k]+1, b[m, n-1, k, k] != 1, m++]; v[m, k] = n; m] ]; Table[Table[U[n, 2+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 23 2013, translated from Maple *)
  • PARI
    Ulam(N,k=2,v=0)={ my( a=vector(k,i,i), c );
    for( n=k,N-1, for( t=1+a[n],9e9, c=0;
      forvec(v=vector(k,i,[i,n]),sum(j=1,k,a[v[j]])==t & c++>1 & next(2),2);
      c||next; v&print1(t","); a=concat(a,t); break;
    )); a}
    /* M. F. Hasler */

A183533 An Ulam-type sequence: a(n) = n if n<=10; for n>10, a(n) = least number > a(n-1) which is a unique sum of 10 distinct earlier terms.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 55, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 145, 163, 190, 217, 235, 271, 280, 1740, 1741, 1744, 1745, 1799, 1804, 1805, 1824, 1825, 1831, 1859, 1869, 1913, 1914, 3554, 10521, 10522, 10526, 10527, 10537, 10563, 10564
Offset: 1

Author

Keywords

Comments

An Ulam-type sequence - see A002858 for further information.

Examples

			a(11) = 55 = 1 + ... + 10 = 10*11/2, because it is the least number >10 with a unique sum of 10 distinct earlier terms.
a(12) = 100 = 1 + ... + 9 + 55 = 10^2, because it is the least number >55 with a unique sum of 10 distinct earlier terms.
		

Crossrefs

Column k=10 of A183534.

Programs

  • Maple
    # see A183534 for programs.

A184533 a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.

Original entry on oeis.org

2, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601
Offset: 1

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Column 2 of the array at A184532.

Crossrefs

Cf. A183532, A183534. Essenitally the same as A032528.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^3+2)^(1/3)]; q[n_]:=Floor[1/p[n]]; Table[q[n],{n,1,120}]
    Join[{2},Table[(6*n^2 - (1-(-1)^n))/4,{n,2,50}]] (* or *) Join[{2}, LinearRecurrence[{2,0,-2,1},{6, 13, 24, 37},50]] (* G. C. Greubel, Feb 20 2017 *)
  • PARI
    a(n)=my(x=sqrtn(n^3+2,3));x-=n;1/x\1 \\ Charles R Greathouse IV, Aug 23 2011
    
  • PARI
    concat([2], for(n=2,25, print1((6*n^2 - (1-(-1)^n))/4, ", "))) \\ G. C. Greubel, Feb 20 2017

Formula

a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = (6*n^2 - (1-(-1)^n))/4 for n>1.
From Alexander R. Povolotsky, Aug 22 2011: (Start)
a(n+1) +a(n) = 3*n^2 + 3*n + 1.
G.f.: x*(-2 - 2*x - x^2 - 2*x^3 + x^4)/((-1 + x)^3*(1 + x)). (End)
a(n) = floor(1/((n^3+2)^(1/3)-n)). - Charles R Greathouse IV, Aug 23 2011
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x) + 2*x)/2. - Stefano Spezia, Apr 19 2025

A184534 a(n) = floor(1/{(4+n^3)^(1/3)}), where {}=fractional part.

Original entry on oeis.org

1, 3, 7, 12, 18, 27, 36, 48, 60, 75, 90, 108, 126, 147, 168, 192, 216, 243, 270, 300, 330, 363, 396, 432, 468, 507, 546, 588, 630, 675, 720, 768, 816, 867, 918, 972, 1026, 1083, 1140, 1200, 1260, 1323, 1386, 1452, 1518, 1587, 1656, 1728, 1800, 1875, 1950, 2028, 2106, 2187, 2268, 2352, 2436, 2523, 2610, 2700, 2790, 2883, 2976, 3072, 3168, 3267, 3366, 3468, 3570, 3675, 3780, 3888, 3996, 4107, 4218, 4332, 4446, 4563, 4680, 4800, 4920, 5043, 5166, 5292, 5418, 5547, 5676, 5808
Offset: 1

Author

Clark Kimberling, Jan 16 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[1/FractionalPart[(n^3 + 4)^(1/3)]], {n, 1, 120}]
  • PARI
    for(n=1, 50, print1(floor(1/frac((4 + n^3)^(1/3))), ", ")) \\ G. C. Greubel, May 14 2017

Formula

a(n) = floor[1/{(4+n^3)^(1/3)}], where {}=fractional part.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
From Colin Barker, Oct 07 2012: (Start)
Empirical: a(n) = 3*(1 - (-1)^n + 4*n + 2*n^2)/8 for n>2.
Empirical G.f.: x*(x^6-2*x^5+x^4-x^2-x-1)/((x-1)^3*(x+1)).(End)
Showing 1-5 of 5 results.