A092870
Expansion of Hypergeometric function F(1/12, 5/12; 1; 1728*x) in powers of x.
Original entry on oeis.org
1, 60, 39780, 38454000, 43751038500, 54538294552560, 72081445966966800, 99225259048241726400, 140744828381240373790500, 204278086466816584003782000, 301931182921413583820949947280
Offset: 0
-
CoefficientList[ Series[ Hypergeometric2F1[ 1/12, 5/12, 1, 1728 x], {x, 0, 10}], x]
-
{a(n) = local(an); if( n<1, n==0, an = vector(n+1); an[1] = 1; for(k=1, n, an[k+1] = an[k] * 12 * (12*k - 7) * (12*k - 11) / k^2); an[n+1])}
-
{a(n)=(12^n/n!^2)*prod(k=0, n-1, (12*k+1)*(12*k+5))} \\ Paul D. Hanna, Jan 25 2011
A184423
a(n) = (2*n)!*(3*n)!/n!^5.
Original entry on oeis.org
1, 12, 540, 33600, 2425500, 190702512, 15849497664, 1369618398720, 121821136479900, 11079206239530000, 1025579963180813040, 96310511463483233280, 9152842704012278107200, 878622906816654279840000
Offset: 0
G.f.: A(x) = 1 + 12*x + 540*x^2 + 33600*x^3 + 2425500*x^4 +...
G.f. of A184424 equals A(x)^(1/2):
A(x)^(1/2) = 1 + 6*x + 252*x^2 + 15288*x^3 + 1089270*x^4 + 84963060*x^5 +...+ [(3^n/n!^2)*Product_{k=1..n} (6*k-4)*(6*k-5)]*x^n +...
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012), arXiv:1111.3057 [math.NT], 2011.
- Titus Piezas III, 0013: Article 3 (Pi Formulas and the Monster Group).
-
Table[((2n)!(3n)!)/(n!)^5,{n,0,20}] (* Harvey P. Dale, Dec 18 2018 *)
-
{a(n)=(3*n)!*(2*n)!/n!^5}
-
{a(n)=polcoeff(sum(m=0,n,3^m*prod(k=1,m,(6*k-4)*(6*k-5))/m!^2*x^m+x*O(x^n))^2,n)}
A184895
a(n) = (7^n/n!^2) * Product_{k=0..n-1} (14k+1)*(14k+6).
Original entry on oeis.org
1, 42, 22050, 16909900, 15269639700, 15109613875944, 15853342647837688, 17325438750851187600, 19510609713302293636050, 22482485054570487449402900, 26382746561837375612125315092, 31419888802098260334367621118904
Offset: 0
G.f.: A(x) = 1 + 42*x + 22050*x^2 + 16909900*x^3 +...
A(x)^2 = 1 + 84*x + 45864*x^2 + 35672000*x^3 +...+ A184896(n)*x^n +...
-
FullSimplify[Table[2^(2*n) * 7^(3*n) * Gamma[n+1/14] * Gamma[n+3/7] / (Gamma[3/7] * Gamma[1/14] * Gamma[n+1]^2), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
-
{a(n)=(7^n/n!^2)*prod(k=0,n-1,(14*k+1)*(14*k+6))}
A184891
a(n) = (5^n/n!^2) * Product_{k=0..n-1} (10k+1)*(10k+4).
Original entry on oeis.org
1, 20, 3850, 1078000, 355066250, 128107903000, 49001272897500, 19520507080800000, 8012558140822125000, 3365274419145292500000, 1439327869068441602250000, 624739666805574817770000000
Offset: 0
G.f.: A(x) = 1 + 20*x + 3850*x^2 + 1078000*x^3 +...
A(x)^2 = 1 + 40*x + 8100*x^2 + 2310000*x^3 +...+ A184892(n)*x^n +...
-
Table[5^n/(n!)^2 Product[(10k+1)(10k+4),{k,0,n-1}],{n,0,20}] (* Harvey P. Dale, Feb 02 2012 *)
FullSimplify[Table[2^(2*n) * 5^(3*n) * Gamma[n+1/10] * Gamma[n+2/5] / (Gamma[2/5] * Gamma[1/10] * Gamma[n+1]^2), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
-
{a(n)=(5^n/n!^2)*prod(k=0,n-1,(10*k+1)*(10*k+4))}
A184897
a(n) = (8^n/n!^2) * Product_{k=0..n-1} (16k+1)*(16k+7).
Original entry on oeis.org
1, 56, 43792, 50098048, 67507119680, 99694514343424, 156121609461801984, 254663020429855285248, 428056704465033002591232, 736257531679856764456919040, 1289628692490437108622739390464
Offset: 0
G.f.: A(x) = 1 + 56*x + 43792*x^2 + 50098048*x^3 +...
A(x)^2 = 1 + 112*x + 90720*x^2 + 105100800*x^3 +...+ A184898(n)*x^n +...
-
FullSimplify[Table[2^(11*n) * Gamma[n+1/16] * Gamma[n+7/16] / (Gamma[n+1]^2 * Gamma[1/16] * Gamma[7/16]), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 03 2014 *)
-
{a(n)=(8^n/n!^2)*prod(k=0,n-1,(16*k+1)*(16*k+7))}
Showing 1-5 of 5 results.
Comments