cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A378352 Decimal expansion of the volume of a (small) triakis octahedron with unit shorter edge length.

Original entry on oeis.org

2, 9, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0, 9, 5, 0, 4, 8, 8, 0, 1, 6, 8, 8, 7, 2, 4, 2, 0, 9, 6, 9, 8, 0, 7, 8, 5, 6, 9, 6, 7, 1, 8, 7, 5, 3, 7, 6, 9, 4, 8, 0, 7, 3, 1, 7, 6, 6, 7, 9, 7, 3, 7, 9, 9, 0, 7, 3, 2, 4, 7, 8, 4, 6, 2, 1, 0, 7, 0, 3, 8, 8, 5, 0, 3, 8, 7, 5, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 23 2024

Keywords

Comments

The (small) triakis octahedron is the dual polyhedron of the truncated cube.

Examples

			2.9142135623730950488016887242096980785696718753769...
		

Crossrefs

Cf. A378351 (surface area), A378353 (inradius), A201488 (midradius), A378354 (dihedral angle).
Cf. A377299 (volume of a truncated cube with unit edge).
Cf. A156035.
Essentially the same as A002193 and A188582.

Programs

  • Mathematica
    First[RealDigits[Sqrt[2] + 3/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisOctahedron", "Volume"], 10, 100]]

Formula

Equals sqrt(2) + 3/2 = A002193 + 3/2.
Equals A156035/2. - Hugo Pfoertner, Nov 24 2024

A343057 Decimal expansion of tan(Pi/32).

Original entry on oeis.org

0, 9, 8, 4, 9, 1, 4, 0, 3, 3, 5, 7, 1, 6, 4, 2, 5, 3, 0, 7, 7, 1, 9, 7, 5, 2, 1, 2, 9, 1, 3, 2, 7, 4, 3, 2, 2, 9, 3, 0, 5, 2, 4, 5, 0, 6, 9, 9, 2, 0, 2, 6, 9, 5, 9, 8, 0, 9, 1, 6, 1, 2, 1, 1, 3, 4, 4, 1, 9, 4, 3, 8, 7, 3, 0, 8, 1, 2, 9, 7, 2, 2, 5, 6, 4, 8, 5, 2, 1, 4, 1, 8, 0, 3, 7, 3, 6, 0, 0, 1, 3, 7, 0, 6, 7, 1, 6, 9, 7, 7, 9, 1, 7, 6, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.098491403357164253077197...
		

Crossrefs

Cf. A343055 (sin(Pi/32)), A343056 (cos(Pi/32)).
tan(Pi/m): A002194 (m=3), A019934 (m=5), A020760 (m=6), A343058 (m=7), A188582 (m=8), A019918 (m=9), A019916 (m=10), A019913 (m=12), A343059 (m=14), A019910 (m=15), A343060 (m=16), A343061 (m=17), A019908 (m=18), A019907 (m=20), A343062 (m=24), A019904 (m=30), A343057 (m=32), A019903 (m=36).

Programs

  • Magma
    R:= RealField(125); Tan(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Tan[Pi/32], 10, 120, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/32)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))))
    
  • SageMath
    numerical_approx(tan(pi/32), digits=125) # G. C. Greubel, Sep 30 2022

Formula

Equals sqrt( (2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))) ).

A270396 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/Fibonacci(k+1).

Original entry on oeis.org

3, 7, 36, 1040, 1378784, 2783678150237, 20812561896916543523976387, 398006071848302987834283599453836703483929049938762, 105246367677020752496441044566935490666701848819994695873528056638957197400663802988967689301303582936
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(2) - 1 = 1/3 + 1/(2*7) + 1/(3*36) + 1/(5*1040) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[2] - 1; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/fibonacci(k+1);
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(2)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016

A270548 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/(2k-1).

Original entry on oeis.org

3, 5, 15, 163, 29203, 1370794960, 5693192315226228214, 247405800822801380465687897681838336769, 267682228701778523205506744045084667800917057557706608910309126004853790212423
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(2) - 1 = 1/(1*3) + 1/(3*5) + 1/(5*15) + 1/(7*163) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt(2) - 1; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/(2*k-1);
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(2)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Apr 03 2016

A297701 Decimal expansion of 1 + sqrt(2) + sqrt(3).

Original entry on oeis.org

4, 1, 4, 6, 2, 6, 4, 3, 6, 9, 9, 4, 1, 9, 7, 2, 3, 4, 2, 3, 2, 9, 1, 3, 5, 0, 6, 5, 7, 1, 5, 5, 7, 0, 4, 4, 5, 5, 1, 2, 4, 7, 7, 1, 2, 9, 1, 8, 7, 3, 2, 8, 7, 0, 1, 2, 3, 2, 4, 8, 6, 7, 1, 7, 4, 4, 2, 6, 6, 5, 4, 9, 5, 3, 7, 0, 9, 0, 7, 0, 7, 5, 9, 3, 1, 5, 3, 3, 7, 2, 1, 0, 8, 4, 8, 9, 0, 1, 4, 8, 4, 1, 0, 6, 3, 9, 9, 8, 7, 6, 4, 6, 3, 1, 9, 0, 0, 0, 0, 5
Offset: 1

Views

Author

Alonso del Arte, Jan 03 2018

Keywords

Comments

This is an algebraic integer of degree 4, with minimal polynomial x^4 - 4*x^3 - 4*x^2 + 16*x - 8.

Examples

			  1.0000000000000000000000000000...
+ 1.4142135623730950488016887242...
+ 1.7320508075688772935274463415...
= 4.1462643699419723423291350657...
		

Crossrefs

Essentially the same as A135611. Cf. A002193, A002194, A014176, A165663, A188582.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 1 + Sqrt(2) + Sqrt(3); // G. C. Greubel, Nov 20 2018
    
  • Mathematica
    RealDigits[1 + Sqrt[2] + Sqrt[3], 10, 100][[1]]
  • PARI
    1+sqrt(2)+sqrt(3) \\ Felix Fröhlich, Jan 06 2018
    
  • Sage
    numerical_approx(1+sqrt(2)+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018

Formula

1 + sqrt(2) + sqrt(3) = 1 + sqrt(5 + 2 sqrt(6)).

Extensions

Terms a(52) onward corrected by G. C. Greubel, Nov 20 2018

A270519 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/k!.

Original entry on oeis.org

3, 7, 18, 217, 21586, 132830816, 8232750479147118, 8738244742575919521189548340591, 28575128242342620144630216663972970082807062570299713849045286
Offset: 1

Views

Author

Clark Kimberling, Mar 30 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(2) - 1 = 1/(1*3) + 1/(2*7) + 1/(6*18) + 1/(24*217) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/k!; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[2] - 1; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k!;
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(2)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 31 2016

A319905 Decimal expansion of 4*(sqrt(2) - 1)/3.

Original entry on oeis.org

5, 5, 2, 2, 8, 4, 7, 4, 9, 8, 3, 0, 7, 9, 3, 3, 9, 8, 4, 0, 2, 2, 5, 1, 6, 3, 2, 2, 7, 9, 5, 9, 7, 4, 3, 8, 0, 9, 2, 8, 9, 5, 8, 3, 3, 8, 3, 5, 9, 3, 0, 7, 6, 4, 2, 3, 5, 5, 7, 2, 9, 8, 3, 9, 8, 7, 6, 4, 3, 3, 0, 4, 6, 1, 6, 1, 4, 2, 7, 1, 8, 4, 6, 7, 1, 8, 3
Offset: 0

Views

Author

Keywords

Comments

A 90-degree unit-circular arc in the first quadrant can be approximated by a cubic Bézier curve. In this case, L = 4*(sqrt(2) - 1)/3 is the unit tangent vector scaling factor that minimizes the distance between the curve and the unit circle segment, provided its endpoints and midpoint are interpolated.
Riškus referred to this constant as "magic number".
The Bézier curve with control points {(1,0), (1,L), (L,1), (0,1)} has a minimum distance to the origin of 1 (at t in {0, 1/2, 1}), and it has a maximum distance to the origin of (1/3)*sqrt(71/6-2*sqrt(2)) = 1.00027253... at t in {(3 - sqrt(3))/6,(3 + sqrt(3))/6}. - Peter Kagey, Feb 21 2025

Examples

			0.552284749830793398402251632279597438092895833835930...
		

Crossrefs

Programs

  • Maple
    Digits:=1000; evalf(4*(sqrt(2) - 1)/3);
  • Mathematica
    RealDigits[4*(Sqrt[2] - 1)/3, 10, 100][[1]]
  • PARI
    4*(sqrt(2) - 1)/3

Formula

Equals (4/3)*tan(Pi/8).
Irrational number represented by the periodic continued fraction [0; [1, 1, 4, 3]]; positive real root of 9*x^2 + 24*x - 16. - Peter Luschny, Oct 04 2018

A367480 Decimal expansion of the radius of a common circle surrounded by seven tangent unit circles.

Original entry on oeis.org

1, 3, 0, 4, 7, 6, 4, 8, 7, 0, 9, 6, 2, 4, 8, 6, 5, 0, 5, 2, 4, 1, 1, 5, 0, 2, 2, 3, 5, 4, 6, 8, 5, 5, 1, 1, 3, 4, 4, 4, 5, 0, 1, 8, 8, 7, 6, 0, 6, 3, 2, 1, 1, 6, 2, 0, 6, 3, 1, 0, 6, 2, 9, 6, 4, 6, 6, 8, 5, 3, 3, 4, 2, 7, 7, 8, 4, 7, 9, 5, 9, 6, 3, 7, 9, 1, 1, 1, 4, 2, 1, 9, 7, 4, 7, 6, 1, 7, 9, 3, 6, 1, 5, 1, 5
Offset: 1

Views

Author

Thomas Otten, Dec 23 2023

Keywords

Comments

The radius of a common circle surrounded by n tangent unit circles (n > 2) is r = 1/sin(Pi/n) - 1.
n=7 is the smallest number for which the radius cannot be expressed using square roots, since the regular heptagon formed by the centers of the tangent circles is non-constructible (see A246724, A188582, and A121570 for n=3, 4, 5).

Examples

			1.3047648709624865052...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Csc[Pi/7] - 1, 10, 120][[1]] (* Amiram Eldar, Dec 28 2023 *)
  • PARI
    1/sin(Pi/7) - 1

Formula

Equals 1 / sin(Pi/7) - 1.
Equals A121598 - 1.
Largest of the 6 real-valued roots of 7*x^6+ 42*x^5 +49*x^4 -84*x^3 -119*x^2 +42*x-1=0. - R. J. Mathar, Aug 29 2025

Extensions

More digits from Jon E. Schoenfield, Dec 24 2023
Comments edited by Michal Paulovic, Dec 26 2023
Showing 1-8 of 8 results.